Do you want to publish a course? Click here

The White Mountain Polarimeter Telescope and an Upper Limit on CMB Polarization

251   0   0.0 ( 0 )
 Added by Rodrigo Leonardi
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

The White Mountain Polarimeter (WMPol) is a dedicated ground-based microwave telescope and receiver system for observing polarization of the Cosmic Microwave Background. WMPol is located at an altitude of 3880 meters on a plateau in the White Mountains of Eastern California, USA, at the Barcroft Facility of the University of California White Mountain Research Station. Presented here is a description of the instrument and the data collected during April through October 2004. We set an upper limit on $E$-mode polarization of 14 $mumathrm{K}$ (95% confidence limit) in the multipole range $170<ell<240$. This result was obtained with 422 hours of observations of a 3 $mathrm{deg}^2$ sky area about the North Celestial Pole, using a 42 GHz polarimeter. This upper limit is consistent with $EE$ polarization predicted from a standard $Lambda$-CDM concordance model.



rate research

Read More

Circular polarization of the Cosmic Microwave Background (CMB) offers the possibility of detecting rotations of the universe and magnetic fields in the primeval universe or in distant clusters of galaxies. We used the Milano Polarimeter (MIPOL) installed at the Testa Grigia Observatory, on the italian Alps, to improve the existing upper limits to the CMB circular polarization at large angular scales. We obtain 95% confidence level upper limits to the degree of the CMB circular polarization ranging between 5.0x10^{-4} and 0.7x10^{-4} at angular scales between 8 and 24 deg, improving by one order of magnitude preexisting upper limits at large angular scales. Our results are still far from the nK region where today expectations place the amplitude of the V Stokes parameter used to characterize circular polarization of the CMB but improve the preexisting limit at similar angular scales. Our observations offered also the opportunity of characterizing the atmospheric emission at 33 GHz at the Testa Grigia Observatory.
We present late-time radio observations of GW170817, the first binary neutron star merger discovered through gravitational waves by the advanced LIGO and Virgo detectors. Our observations, carried out with the Karl G. Jansky Very Large Array, were optimized to detect polarized radio emission, and thus to constrain the linear polarization fraction of GW170817. At an epoch of ~244 days after the merger, we rule out linearly polarized emission above a fraction of ~12% at a frequency of 2.8 GHz (99% confidence). Within the structured jet scenario (a.k.a. successful jet plus cocoon system) for GW170817, the derived upper-limit on the radio continuum linear polarization fraction strongly constrains the magnetic field configuration in the shocked ejecta. We show that our results for GW170817 are compatible with the low level of linear polarization found in afterglows of cosmological long gamma-ray bursts. Finally, we discuss our findings in the context of future expectations for the study of radio counterparts of binary neutron star mergers identified by ground-based gravitational-wave detectors.
The BICEP3 CMB Polarimeter is a small-aperture refracting telescope located at the South Pole and is specifically designed to search for the possible signature of inflationary gravitational waves in the Cosmic Microwave Background (CMB). The experiment measures polarization on the sky by differencing the signal of co-located, orthogonally polarized antennas coupled to Transition Edge Sensor (TES) detectors. We present precise measurements of the absolute polarization response angles and polarization efficiencies for nearly all of BICEP3s $sim800$ functioning polarization-sensitive detector pairs from calibration data taken in January 2018. Using a Rotating Polarized Source (RPS), we mapped polarization response for each detector over a full 360 degrees of source rotation and at multiple telescope boresight rotations from which per-pair polarization properties were estimated. In future work, these results will be used to constrain signals predicted by exotic physical models such as Cosmic Birefringence.
We present a new upper limit on CMB circular polarization from the 2015 flight of SPIDER, a balloon-borne telescope designed to search for $B$-mode linear polarization from cosmic inflation. Although the level of circular polarization in the CMB is predicted to be very small, experimental limits provide a valuable test of the underlying models. By exploiting the non-zero circular-to-linear polarization coupling of the HWP polarization modulators, data from SPIDERs 2015 Antarctic flight provide a constraint on Stokes $V$ at 95 and 150 GHz from $33<ell<307$. No other limits exist over this full range of angular scales, and SPIDER improves upon the previous limit by several orders of magnitude, providing 95% C.L. constraints on $ell (ell+1)C_{ell}^{VV}/(2pi)$ ranging from 141 $mu K ^2$ to 255 $mu K ^2$ at 150 GHz for a thermal CMB spectrum. As linear CMB polarization experiments become increasingly sensitive, the techniques described in this paper can be applied to obtain even stronger constraints on circular polarization.
SPTpol is a dual-frequency polarization-sensitive camera that was deployed on the 10-meter South Pole Telescope in January 2012. SPTpol will measure the polarization anisotropy of the cosmic microwave background (CMB) on angular scales spanning an arcminute to several degrees. The polarization sensitivity of SPTpol will enable a detection of the CMB B-mode polarization from the detection of the gravitational lensing of the CMB by large scale structure, and a detection or improved upper limit on a primordial signal due to inflationary gravity waves. The two measurements can be used to constrain the sum of the neutrino masses and the energy scale of inflation. These science goals can be achieved through the polarization sensitivity of the SPTpol camera and careful control of systematics. The SPTpol camera consists of 768 pixels, each containing two transition-edge sensor (TES) bolometers coupled to orthogonal polarizations, and a total of 1536 bolometers. The pixels are sensitive to light in one of two frequency bands centered at 90 and 150 GHz, with 180 pixels at 90 GHz and 588 pixels at 150 GHz. The SPTpol design has several features designed to control polarization systematics, including: single-moded feedhorns with low cross-polarization, bolometer pairs well-matched to difference atmospheric signals, an improved ground shield design based on far-sidelobe measurements of the SPT, and a small beam to reduce temperature to polarization leakage. We present an overview of the SPTpol instrument design, project status, and science projections.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا