Do you want to publish a course? Click here

Site-selective conductance of sidewall functionalized carbon nanotubes

159   0   0.0 ( 0 )
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use DFT to study the effect of molecular adsorbates on the conductance of metallic carbon nanotubes. The five molecules considered (NO2, NH2, H, COOH, OH) lead to similar scattering of the electrons. The adsorption of a single molecule suppresses one of the two available channels of the CNT at low bias conductance. If more molecules are adsorbed on the same sublattice, the remaining open channel can be blocked or not, depending on the relative position of the adsorbates. If a simple geometric condition is fulfilled this channel is still open, even after adsorbing an arbitrary number of molecules.



rate research

Read More

We have calculated the effects of structural distortions of armchair carbon nanotubes on their electrical transport properties. We found that the bending of the nanotubes decreases their transmission function in certain energy ranges and leads to an increased electrical resistance. Electronic structure calculations show that these energy ranges contain localized states with significant $sigma$-$pi$ hybridization resulting from the increased curvature produced by bending. Our calculations of the contact resistance show that the large contact resistances observed for SWNTs are likely due to the weak coupling of the NT to the metal in side bonded NT-metal configurations.
We investigate the electronic structure of carbon nanotubes functionalized by adsorbates anchored with single C-C covalent bonds. We find that, despite the particular adsorbate, a spin moment with a universal value of 1.0 $mu_B$ per molecule is induced at low coverage. Therefore, we propose a mechanism of bonding-induced magnetism at the carbon surface. The adsorption of a single molecule creates a dispersionless defect state at the Fermi energy, which is mainly localized in the carbon wall and presents a small contribution from the adsorbate. This universal spin moment is fairly independent of the coverage as long as all the molecules occupy the same graphenic sublattice. The magnetic coupling between adsorbates is also studied and reveals a key dependence on the graphenic sublattice adsorption site.
We investigate the effects of impurity scattering on the conductance of metallic carbon nanotubes as a function of the relative separation of the impurities. First we compute the conductance of a clean (6,6) tube, and the effect of model gold contacts on this conductance. Then, we compute the effect of introducing a single, two, and three oxygen atom impurities. We find that the conductance of a single-oxygen-doped (6,6) nanotube decreases by about 30 % with respect to that of the perfect nanotube. The presence of a second doping atom induces strong changes of the conductance which, however, depend very strongly on the relative position of the two oxygen atoms. We observe regular oscillations of the conductance that repeat over an O-O distance that corresponds to an integral number of half Fermi-wavelengths ($mlambda_F/2$). These fluctuations reflect strong electron interference phenomena produced by electron scattering from the oxygen defects whose contribution to the resistance of the tube cannot be obtained by simply summing up their individual contributions.
106 - Z. X. Guo , J. W. Ding , Y. Xiao 2007
In terms of lattice dynamics theory, we study the vibrational properties of the oxygen-functionalized single wall carbon nanotubes (O-SWCNs). Due to the C-O and O-O interactions, many degenerate phonon modes are split and even some new phonon modes are obtained, different from the bare SWCNs. A distinct Raman shift is found in both the radial breathing mode and G modes, depending not only on the tube diameter and chirality but also on oxygen coverage and adsorption configurations. With the oxygen coverage increasing, interesting, a nonmonotonic up- and down-shift is observed in G modes, which is contributed to the competition between the bond expansion and contraction, there coexisting in the functionalized carbon nanotube.
We present a comprehensive study of the properties of the off-resonant conductance spectrum in oligomer nanojunctions between graphitic electrodes. By employing first-principle-based methods and the Landauer approach of quantum transport, we identify how the electronic structure of the molecular junction components is reflected in electron transport across such systems. For virtually all energies within the conduction gap of the corresponding idealised polymer chain, we show that: a) the inverse decay length of the tunnelling conductance is intrinsically defined by the complex-band structure of the molecular wire despite ultrashort oligomer lengths of few monomer units, and b) the contact conductance crucially depends on both the local density of states on the metal side and the realised interfacial contact.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا