Do you want to publish a course? Click here

Topological order in a 3D toric code at finite temperature

426   0   0.0 ( 0 )
 Added by Claudio Castelnovo
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study topological order in a toric code in three spatial dimensions, or a 3+1D Z_2 gauge theory, at finite temperature. We compute exactly the topological entropy of the system, and show that it drops, for any infinitesimal temperature, to half its value at zero temperature. The remaining half of the entropy stays constant up to a critical temperature Tc, dropping to zero above Tc. These results show that topologically ordered phases exist at finite temperatures, and we give a simple interpretation of the order in terms of fluctuating strings and membranes, and how thermally induced point defects affect these extended structures. Finally, we discuss the nature of the topological order at finite temperature, and its quantum and classical aspects.



rate research

Read More

As new kinds of stabilizer code models, fracton models have been promising in realizing quantum memory or quantum hard drives. However, it has been shown that the fracton topological order of 3D fracton models occurs only at zero temperature. In this Letter, we show that higher dimensional fracton models can support a fracton topological order below a nonzero critical temperature $T_c$. Focusing on a typical 4D X-cube model, we show that there is a finite critical temperature $T_c$ by analyzing its free energy from duality. We also obtained the expectation value of the t Hooft loops in the 4D X-cube model, which directly shows a confinement-deconfinement phase transition at finite temperature. This finite-temperature phase transition can be understood as spontaneously breaking the $mathbb{Z}_2$ one-form subsystem symmetry. Moreover, we propose a new no-go theorem for finite-temperature quantum fracton topological order.
We calculate exactly the von Neumann and topological entropies of the toric code as a function of system size and temperature. We do so for systems with infinite energy scale separation between magnetic and electric excitations, so that the magnetic closed loop structure is fully preserved while the electric loop structure is tampered with by thermally excited electric charges. We find that the entanglement entropy is a singular function of temperature and system size, and that the limit of zero temperature and the limit of infinite system size do not commute. From the entanglement entropy we obtain the topological entropy, which is shown to drop to half its zero-temperature value for any infinitesimal temperature in the thermodynamic limit, and remains constant as the temperature is further increased. Such discontinuous behavior is replaced by a smooth decreasing function in finite-size systems. If the separation of energy scales in the system is large but finite, we argue that our results hold at small enough temperature and finite system size, and a second drop in the topological entropy should occur as the temperature is raised so as to disrupt the magnetic loop structure by allowing the appearance of free magnetic charges. We interpret our results as an indication that the underlying magnetic and electric closed loop structures contribute equally to the topological entropy (and therefore to the topological order) in the system. Since each loop structure emph{per se} is a classical object, we interpret the quantum topological order in our system as arising from the ability of the two structures to be superimposed and appear simultaneously.
The last decade has witnessed an impressive progress in the theoretical understanding of transport properties of clean, one-dimensional quantum lattice systems. Many physically relevant models in one dimension are Bethe-ansatz integrable, including the anisotropic spin-1/2 Heisenberg (also called spin-1/2 XXZ chain) and the Fermi-Hubbard model. Nevertheless, practical computations of, for instance, correlation functions and transport coefficients pose hard problems from both the conceptual and technical point of view. Only due to recent progress in the theory of integrable systems on the one hand and due to the development of numerical methods on the other hand has it become possible to compute their finite temperature and nonequilibrium transport properties quantitatively. Most importantly, due to the discovery of a novel class of quasilocal conserved quantities, there is now a qualitative understanding of the origin of ballistic finite-temperature transport, and even diffusive or super-diffusive subleading corrections, in integrable lattice models. We shall review the current understanding of transport in one-dimensional lattice models, in particular, in the paradigmatic example of the spin-1/2 XXZ and Fermi-Hubbard models, and we elaborate on state-of-the-art theoretical methods, including both analytical and computational approaches. Among other novel techniques, we discuss matrix-product-states based simulation methods, dynamical typicality, and, in particular, generalized hydrodynamics. We will discuss the close and fruitful connection between theoretical models and recent experiments, with examples from both the realm of quantum magnets and ultracold quantum gases in optical lattices.
We derive an effective field theory model for magnetic topological insulators and predict that a magnetic electronic gap persists on the surface for temperatures above the ordering temperature of the bulk. Our analysis also applies to interfaces of heterostructures consisting of a ferromagnetic and a topological insulator. In order to make quantitative predictions for MnBi$_2$Te$_4$, and for EuS-Bi$_2$Se$_3$ heterostructures, we combine the effective field theory method with density functional theory and Monte Carlo simulations. For MnBi$_2$Te$_4$ we predict an upwards Neel temperature shift at the surface up to $15 %$, while the EuS-Bi$_2$Se$_3$ interface exhibits a smaller relative shift. The effective theory also predicts induced Dzyaloshinskii-Moriya interactions and a topological magnetoelectric effect, both of which feature a finite temperature and chemical potential dependence.
We estimate thermal one-point functions in the 3d Ising CFT using the operator product expansion (OPE) and the Kubo-Martin-Schwinger (KMS) condition. Several operator dimensions and OPE coefficients of the theory are known from the numerical bootstrap for flat-space four-point functions. Taking this data as input, we use a thermal Lorentzian inversion formula to compute thermal one-point coefficients of the first few Regge trajectories in terms of a small number of unknown parameters. We approximately determine the unknown parameters by imposing the KMS condition on the two-point functions $langle sigmasigma rangle$ and $langle epsilonepsilon rangle$. As a result, we estimate the one-point functions of the lowest-dimension $mathbb Z_2$-even scalar $epsilon$ and the stress-energy tensor $T_{mu u}$. Our result for $langle sigmasigma rangle$ at finite-temperature agrees with Monte-Carlo simulations within a few percent, inside the radius of convergence of the OPE.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا