Do you want to publish a course? Click here

Detecting transits from Earth-sized planets around Sun-like stars

188   0   0.0 ( 0 )
 Added by Stefania Carpano
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Context. Detecting regular dips in the light curve of a star is an easy way to detect the presence of an orbiting planet. COROT is a Franco-European mission launched at the end of 2006, and one of its main objectives is to detect planetary systems using the transit method. Aims. In this paper, we present a new method for transit detection and determine the smallest detected planetary radius, assuming a parent star like the Sun. Methods. We simulated light curves with Poisson noise and stellar variability, for which data from the VIRGO/PMO6 instrument on board SoHO were used. Transits were simulated using the UTM software. Light curves were denoised by the mean of a low-pass and a high-pass filter. The detection of periodic transits works on light curves folded at several trial periods with the particularity that no rebinning is performed after the folding. The best fit was obtain when all transits are overlayed, i.e when the data are folded at the right period. Results. Assuming a single data set lasting 150d, transits from a planet with a radius down to 2 Rearth can be detected. The efficiency depends neither on the transit duration nor on the number of transits observed. Furthermore we simulated transits with periods close to 150d in data sets containing three observations of 150d, separated by regular gaps with the same length. Again, planets with a radius down to 2 Rearth can be detected. Conclusions. Within the given range of parameters, the detection efficiency depends slightly on the apparent magnitude of the star but neither on the transit duration nor the number of transits. Furthermore, multiple observations might represent a solution for the COROT mission for detecting small planets when the orbital period is much longer than the duration of a single observation.



rate research

Read More

291 - L. Kaltenegger , W.A. Traub 2009
Transmission spectroscopy of Earth-like exoplanets is a potential tool for habitability screening. Transiting planets are present-day Rosetta Stones for understanding extrasolar planets because they offer the possibility to characterize giant planet atmospheres and should provide an access to biomarkers in the atmospheres of Earth-like exoplanets, once they are detected. Using the Earth itself as a proxy we show the potential and limits of the transiting technique to detect biomarkers on an Earth-analog exoplanet in transit. We quantify the Earths cross section as a function of wavelength, and show the effect of each atmospheric species, aerosol, and Rayleigh scattering. Clouds do not significantly affect this picture because the opacity of the lower atmosphere from aerosol and Rayleigh losses dominates over cloud losses. We calculate the optimum signal-to-noise ratio for spectral features in the primary eclipse spectrum of an Earth-like exoplanet around a Sun-like star and also M stars, for a 6.5-m telescope in space. We find that the signal to noise values for all important spectral features are on the order of unity or less per transit - except for the closest stars - making it difficult to detect such features in one single transit, and implying that co-adding of many transits will be essential.
Small planets, 1-4x the size of Earth, are extremely common around Sun-like stars, and surprisingly so, as they are missing in our solar system. Recent detections have yielded enough information about this class of exoplanets to begin characterizing their occurrence rates, orbits, masses, densities, and internal structures. The Kepler mission finds the smallest planets to be most common, as 26% of Sun-like stars have small, 1-2 R_e planets with orbital periods under 100 days, and 11% have 1-2 R_e planets that receive 1-4x the incident stellar flux that warms our Earth. These Earth-size planets are sprinkled uniformly with orbital distance (logarithmically) out to 0.4 AU, and probably beyond. Mass measurements for 33 transiting planets of 1-4 R_e show that the smallest of them, R < 1.5 R_e, have the density expected for rocky planets. Their densities increase with increasing radius, likely caused by gravitational compression. Including solar system planets yields a relation: rho = 2.32 + 3.19 R/R_e [g/cc]. Larger planets, in the radius range 1.5-4.0 R_e, have densities that decline with increasing radius, revealing increasing amounts of low-density material in an envelope surrounding a rocky core, befitting the appellation mini-Neptunes. Planets of ~1.5 R_e have the highest densities, averaging near 10 g/cc. The gas giant planets occur preferentially around stars that are rich in heavy elements, while rocky planets occur around stars having a range of heavy element abundances. One explanation is that the fast formation of rocky cores in protoplanetary disks enriched in heavy elements permits the gravitational accumulation of gas before it vanishes, forming giant planets. But models of the formation of 1-4 R_e planets remain uncertain. Defining habitable zones remains difficult, without benefit of either detections of life elsewhere or an understanding of lifes biochemical origins.
We present the discovery of a super-earth-sized planet in or near the habitable zone of a sun-like star. The host is Kepler-69, a 13.7 mag G4V-type star. We detect two periodic sets of transit signals in the three-year flux time series of Kepler-69, obtained with the Kepler spacecraft. Using the very high precision Kepler photometry, and follow-up observations, our confidence that these signals represent planetary transits is >99.1%. The inner planet, Kepler-69b, has a radius of 2.24+/-0.4 Rearth and orbits the host star every 13.7 days. The outer planet, Kepler-69c, is a super-Earth-size object with a radius of 1.7+/-0.3 Rearth and an orbital period of 242.5 days. Assuming an Earth-like Bond albedo, Kepler-69c has an equilibrium temperature of 299 +/- 19 K, which places the planet close to the habitable zone around the host star. This is the smallest planet found by Kepler to be orbiting in or near habitable zone of a Sun-like star and represents an important step on the path to finding the first true Earth analog.
The only way to detect planets around stars at distances of several kpc is by (photometric or astrometric) microlensing observations. In this paper, we show that the capability of photometric microlensing extends to the detection of signals caused by planets around stars in nearby galaxies (e.g. M31) and that there is no other method that can achieve this. Due to the large crowding, microlensing experiments towards M31 can only observe the high-magnification part of a lensing light curve. Therefore, the dominating channel for microlensing signals by planets is in distortions near the peak of high-magnification events as discussed by Griest and Safizadeh. We calculate the probability to detect planetary anomalies for microlensing experiments towards M31 and find that jupiter-like planets around stars in M31 can be detected. Though the characterization of the planet(s) involved in this signal will be difficult, the absence of such signals can yield strong constraints on the abundance of jupiter-like planets.
The search for life in the universe is currently focused on Earth-analog planets. However, we should be prepared to find a diversity of terrestrial exoplanets not only in terms of host star but also in terms of surface environment. Simulated high-resolution spectra of habitable planets covering a wide parameter space are essential in training retrieval tools, optimizing observing strategies, and interpreting upcoming observations. Ground-based extremely large telescopes like ELT, GMT, and TMT; and future space-based mission concepts like Origins, HabEx, and LUVOIR are designed to have the capability of characterizing a variety of potentially habitable worlds. Some of these telescopes will use high precision radial velocity techniques to obtain the required high-resolution spectra ($Rapprox100,000$) needed to characterize potentially habitable exoplanets. Here we present a database of high-resolution (0.01 cm$^{-1}$) reflection and emission spectra for simulated exoplanets with a wide range of surfaces, receiving similar irradiation as Earth around 12 different host stars from F0 to K7. Depending on surface type and host star, we show differences in spectral feature strength as well as overall reflectance, emission, and star to planet contrast ratio of terrestrial planets in the Habitable zone of their host stars. Accounting for the wavelength-dependent interaction of the stellar flux and the surface will help identify the best targets for upcoming spectral observations in the visible and infrared. All of our spectra and model profiles are available online.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا