Do you want to publish a course? Click here

Antiferromagnetic superexchange interactions in LaOFeAs

127   0   0.0 ( 0 )
 Added by Zhong-Yi Lu
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

From first-principles calculations, we have studied the electronic and magnetic structures of the ground state of LaOFeAs. The Fe spins are found to be collinear antiferromagnetic ordered, resulting from the interplay between the strong nearest and next-nearest neighbor superexchange antiferromagnetic interactions. The structure transition observed by neutron scattering is shown to be magnetically driven. Our study suggests that the antiferromagnetic fluctuation plays an important role in the Fe-based superconductors. This sheds light on the understanding of the pairing mechanism in these materials.



rate research

Read More

Extensive Cu-NMR studies on multilayered high-Tc cuprates have deduced the following results;(1) Antiferromagnetic (AFM) moment M_{AFM} is decreased with doping, regardless of the number of CuO_2 layers n, and collapses around a carrier density N_h = 0.17. (2) The AFM ordering temperature is enhanced as the out-of-plane coupling J_{out} increases with increasing n. (3) The in-plane superexchange J_{in} is invariant with doping, but is even increased. (4) The dome shape of T_c from the underdoped to the overdoped regime with a maximum T_c at N_h = 0.22 does not depend on n, but its maximum value of T_c seems to depend on n moderately. The present results strongly suggest that the AFM interaction plays the vital role as the glue for the Cooper pairs, which will lead us to a genuine understanding of why the T_c of cuprate superconductors is so high.
Magnetic properties of silver(II) compounds have been of interest in recent years. In covalent compounds, the main mechanism of interaction between paramagnetic sites is the superexchange via the connecting ligand. To date, little is known of magnetic interactions between Ag(II) cations and other paramagnetic centres. It is because only a few compounds bearing Ag(II) cation and other paramagnetic transition metal cation are known experimentally. Recently the high-pressure synthesis of ternary silver(II) fluorides with 3d metal cations AgMF4 (M = Co, Ni, Cu) was predicted to be feasible. Here, we investigate the magnetic properties of these compounds in their diverse polymorphic forms. Using well established computational methods we predict superexchange pathways in AgMF4, evaluate coupling constants and calculate the impact of Ag(II) presence on superexchange between the other cations. The results indicate that the low-pressure form of AgCuF4, the only composed of stacked layers as the parent AgF2, would hold mainly Ag-Ag and Cu-Cu superexchange interactions. Upon compression, or with the nickel(II) cation, the Ag-M interactions in AgMF4 intensify, which is emphasized by an increase of Ag-M superexchange coupling constants and Ag-F-M angles. All the strongest Ag-M superexchange pathways are quasi-linear, leading to the formation of antiferromagnetic chains along the crystallographic directions. The impact of Ag(II) on M-M superexchange turns out to be moderate, due to factors connected to the crystal structure.
This study examines the magnetic interactions between spatially-variable manganese and chromium trimers substituted into a graphene superlattice. Using density functional theory, we calculate the electronic band structure and magnetic populations for the determination of the electronic and magnetic properties of the system. To explore the super-exchange coupling between the transition-metal atoms, we establish the magnetic magnetic ground states through a comparison of multiple magnetic and spatial configurations. Through an analysis of the electronic and magnetic properties, we conclude that the presence of transition-metal atoms can induce a distinct magnetic moment in the surrounding carbon atoms as well as produce an RKKY-like super-exchange coupling. It hoped that these simulations can lead to the realization of spintronic applications in graphene through electronic control of the magnetic clusters.
We study a spin $S$ quantum Heisenberg model on the Fe lattice of the rare-earth oxypnictide superconductors. Using both large $S$ and large $N$ methods, we show that this model exhibits a sequence of two phase transitions: from a high temperature symmetric phase to a narrow region of intermediate ``nematic phase, and then to a low temperature spin ordered phase. Identifying phases by their broken symmetries, these phases correspond precisely to the sequence of structural (tetragonal to monoclinic) and magnetic transitions that have been recently revealed in neutron scattering studies of LaOFeAs. The structural transition can thus be identified with the existence of incipient (``fluctuating) magnetic order.
305 - Fengjie Ma , Wei Ji , Jiangping Hu 2008
By the first-principles electronic structure calculations, we find that the ground state of PbO-type tetragonal $alpha$-FeTe is in a bi-collinear antiferromagnetic state, in which the Fe local moments ($sim2.5mu_B$) are ordered ferromagnetically along a diagonal direction and antiferromagnetically along the other diagonal direction on the Fe square lattice. This bi-collinear order results from the interplay among the nearest, next nearest, and next next nearest neighbor superexchange interactions $J_1$, $J_2$, and $J_3$, mediated by Te $5p$-band. In contrast, the ground state of $alpha$-FeSe is in the collinear antiferromagnetic order, similar as in LaFeAsO and BaFe$_2$As$_2$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا