Do you want to publish a course? Click here

Radio source calibration for the VSA and other CMB instruments at around 30 GHz

594   0   0.0 ( 0 )
 Added by Clive Dickinson PhD
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Accurate calibration of data is essential for the current generation of CMB experiments. Using data from the Very Small Array (VSA), we describe procedures which will lead to an accuracy of 1 percent or better for experiments such as the VSA and CBI. Particular attention is paid to the stability of the receiver systems, the quality of the site and frequent observations of reference sources. At 30 GHz the careful correction for atmospheric emission and absorption is shown to be essential for achieving 1 percent precision. The sources for which a 1 percent relative flux density calibration was achieved included Cas A, Cyg A, Tau A and NGC7027 and the planets Venus, Jupiter and Saturn. A flux density, or brightness temperature in the case of the planets, was derived at 33 GHz relative to Jupiter which was adopted as the fundamental calibrator. A spectral index at ~30 GHz is given for each. Cas A,Tau A, NGC7027 and Venus were examined for variability. Cas A was found to be decreasing at $0.394 pm 0.019$ percent per year over the period March 2001 to August 2004. In the same period Tau A was decreasing at $0.22pm 0.07$ percent per year. A survey of the published data showed that the planetary nebula NGC7027 decreased at $0.16pm 0.04$ percent per year over the period 1967 to 2003. Venus showed an insignificant ($1.5 pm 1.3$ percent) variation with Venusian illumination. The integrated polarization of Tau A at 33 GHz was found to be $7.8pm 0.6$ percent at pa $ = 148^circ pm 3^circ$.}



rate research

Read More

Small angular scale (high l) studies of cosmic microwave background anisotropies require accurate knowledge of the statistical properties of extragalactic sources at cm-mm wavelengths. We have used a 30 GHz dual-beam receiver (OCRA-p) on the Torun 32-m telescope to measure the flux densities of 121 sources in VSA fields selected at 15 GHz with the Ryle Telescope. We have detected 57 sources above a limiting flux density of 5mJy, of which 31 sources have a flux density greater than 10mJy, which is our effective completeness limit. From these measurements we derive a surface density of sources above 10mJy at 30 GHz of 2.0+/-0.4 per square degree. This is consistent with the surface density obtained by Mason et al. (2009) who observed a large sample of sources selected at a much lower frequency (1.4 GHz). We have also investigated the dependence of the spectral index distribution on flux density by comparing our results with those for sources above 1 Jy selected from the WMAP 22 GHz catalogue. We conclude that the proportion of steep spectrum sources increases with decreasing flux density, qualitatively consistent with the predictions of deZotti et al. (2005). We find no evidence for an unexpected population of sources whose spectra rise towards high frequencies, which would affect our ability to interpret current high resolution CMB observations at 30 GHz and above.
Extra-galactic radio sources are a significant contaminant in cosmic microwave background and Sunyaev-Zeldovich effect experiments. Deep interferometric observations with the BIMA and OVRO arrays are used to characterize the spatial, spectral, and flux distributions of radio sources toward massive galaxy clusters at 28.5 GHz. We compute counts of mJy source fluxes from 89 fields centered on known massive galaxy clusters and 8 non-cluster fields. We find that source counts in the inner regions of the cluster fields (within 0.5 arcmin of the cluster center) are a factor of 8.9 (+4.3,-2.8) times higher than counts in the outer regions of the cluster fields (radius greater than 0.5 arcmin). Counts in the outer regions of the cluster fields are in turn a factor of 3.3 (+4.1,-1.8) greater than those in the non-cluster fields. Counts in the non-cluster fields are consistent with extrapolations from the results of other surveys. We compute spectral indices of mJy sources in cluster fields between 1.4 and 28.5 GHz and find a mean spectral index of alpha = 0.66 with an rms dispersion of 0.36, where flux is proportional to frequency raised to negative alpha. The distribution is skewed, with a median spectral index of 0.72 and 25th and 75th percentiles of 0.51 and 0.92, respectively. This is steeper than the spectral indices of stronger field sources measured by other surveys.
99 - Angela C. Taylor 2003
We discuss two experiments - the Very Small Array (VSA) and the Arcminute MicroKelvin Imager (AMI) - and their prospects for observing the CMB at high angular multipoles. Whilst the VSA is primarily designed to observe primary anisotropies in the CMB, AMI is designed to image secondary anisotropies via the Sunyaev-Zeldovich effect. The combined l-range of these two instruments is between l = 150 and ~10000.
We have used the Australia Telescope Compact Array (ATCA) at 95GHz to carry out continuum observations of 130 extragalactic radio sources selected from the Australia Telescope 20GHz (AT20G) survey. Over 90% of these sources are detected at 95 GHz, and we use a triple-correlation method to measure simultaneous 20 and 95 GHz flux densities. We show that the ATCA can measure 95GHz flux densities to ~10% accuracy in a few minutes for sources above ~50mJy. The median 20-95GHz spectral index does not vary significantly with flux density for extragalactic sources with S20>150 mJy. This allows us to estimate the extragalactic radio source counts at 95GHz by combining our observed 20-95GHz spectral-index distribution with the accurate 20GHz source counts measured in the AT20G survey. The resulting 95GHz source counts down to 80 mJy are significantly lower than those found by several previous studies. The main reason is that most radio sources with flat or rising spectra in the frequency range 5-20GHz show a spectral turnover between 20 and 95 GHz. As a result, there are fewer 95GHz sources (by almost a factor of two at 0.1 Jy) than would be predicted on the basis of extrapolation from the source populations seen in lower-frequency surveys. We also derive the predicted confusion noise in CMB surveys at 95GHz and find a value 20-30% lower than previous estimates. The 95GHz source population at the flux levels probed by this study is dominated by QSOs with a median redshift z~1. We find a correlation between optical magnitude and 95GHz flux density which suggests that many of the brightest 95 GHz sources are relativistically beamed, with both the optical and millimetre continuum significantly brightened by Doppler boosting.
Aims: MASCARA and bRing are photometric surveys designed to detect variability caused by exoplanets in stars with $m_V < 8.4$. Such variability signals are typically small and require an accurate calibration algorithm, tailored to the survey, in order to be detected. This paper presents the methods developed to calibrate the raw photometry of the MASCARA and bRing stations and characterizes the performance of the methods and instruments. Methods: For the primary calibration a modified version of the coarse decorrelation algorithm is used, which corrects for the extinction due to the earths atmosphere, the camera transmission, and intrapixel variations. Residual trends are removed from the light curves of individual stars using empirical secondary calibration methods. In order to optimize these methods, as well as characterize the performance of the instruments, transit signals were injected in the data. Results: After optimal calibration an RMS scatter of 10 mmag at $m_V sim 7.5$ is achieved in the light curves. By injecting transit signals with periods between one and five days in the MASCARA data obtained by the La Palma station over the course of one year, we demonstrate that MASCARA La Palma is able to recover 84.0, 60.5 and 20.7% of signals with depths of 2, 1 and 0.5% respectively, with a strong dependency on the observed declination, recovering 65.4% of all transit signals at $delta > 0^circ$ versus 35.8% at $delta < 0^circ$. Using the full three years of data obtained by MASCARA La Palma to date, similar recovery rates are extended to periods up to ten days. We derive a preliminary occurrence rate for hot Jupiters around A-stars of ${>} 0.4 %$, knowing that many hot Jupiters are still overlooked. In the era of TESS, MASCARA and bRing will provide an interesting synergy for finding long-period (${>} 13.5$ days) transiting gas-giant planets around the brightest stars.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا