No Arabic abstract
The totally asymmetric simple exclusion process (TASEP) is a well studied example of far-from-equilibrium dynamics. Here, we consider a TASEP with open boundaries but impose a global constraint on the total number of particles. In other words, the boundary reservoirs and the system must share a finite supply of particles. Using simulations and analytic arguments, we obtain the average particle density and current of the system, as a function of the boundary rates and the total number of particles. Our findings are relevant to biological transport problems if the availability of molecular motors becomes a rate-limiting factor.
The observable properties of topological quantum matter are often described by topological field theories. We here demonstrate that this principle extends beyond thermal equilibrium. To this end, we construct a model of two-dimensional driven open dynamics with a Chern insulator steady state. Within a Keldysh field theory approach, we show that under mild assumptions - particle number conservation and purity of the stationary state - an abelian Chern-Simons theory describes its response to external perturbations. As a corollary, we predict chiral edge modes stabilized by a dissipative bulk.
Far-from-equilibrium many-body systems, from soap bubbles to suspensions to polymers, learn the drives that push them. This learning has been observed via thermodynamic properties, such as work absorption and strain. We move beyond these macroscopic properties that were first defined for equilibrium contexts: We quantify statistical mechanical learning with machine learning. Our toolkit relies on a structural parallel that we identify between far-from-equilibrium statistical mechanics and representation learning, which is undergone by neural networks that contain bottlenecks, including variational autoencoders. We train a variational autoencoder, via unsupervised learning, on configurations assumed by a many-body system during strong driving. We analyze the neural networks bottleneck to measure the many-body systems classification ability, memory capacity, discrimination ability, and novelty detection. Numerical simulations of a spin glass illustrate our technique. This toolkit exposes self-organization that eludes detection by thermodynamic measures, more reliably and more precisely identifying and quantifying learning by matter.
We study the tunneling transport through a nanojunction in the far-from-equilibrium regime at relatively low temperatures. We show that the current-voltage characteristics is significantly modified as compared to the usual quasi-equilibrium result by lifting the suppression due to the Coulomb blockade. These effects are important in realistic nanojunctions. We study the high-impedance case in detail to explain the underlying physics and construct a more realistic theoretical model for the case of a metallic junction taking into account dynamic Coulomb interaction. This dynamic screening further reduces the effect of the Coulomb blockade.
The quantum dynamics of interacting many-body systems has become a unique venue for the realization of novel states of matter. Here we unveil a new class of nonequilibrium states that are eigenstates of an emergent local Hamiltonian. The latter is explicitly time dependent and, even though it does not commute with the physical Hamiltonian, it behaves as a conserved quantity of the time-evolving system. We discuss two examples in which the emergent eigenstate solution can be applied for an extensive (in system size) time: transport in one-dimensional lattices with initial particle (or spin) imbalance, and sudden expansion of quantum gases in optical lattices. We focus on noninteracting spinless fermions, hard-core bosons, and the Heisenberg model. We show that current-carrying states can be ground states of emergent local Hamiltonians, and that they can exhibit a quasimomentum distribution function that is peaked at nonzero (and tunable) quasimomentum. We also show that time-evolving states can be highly-excited eigenstates of emergent local Hamiltonians, with an entanglement entropy that does not exhibit volume-law scaling.
Fluctuation-dissipation relations or theorems (FDTs) are fundamental for statistical physics and can be rigorously derived for equilibrium systems. Their applicability to non-equilibrium systems is, however, debated. Here, we simulate an active microrheology experiment, in which a spherical colloid is pulled with a constant external force through a fluid, creating near-equilibrium and far-from-equilibrium systems. We characterize the structural and dynamical properties of these systems, and reconstruct an effective generalized Langevin equation (GLE) for the colloid dynamics. Specifically, we test the validity of two FDTs: The first FDT relates the non-equilibrium response of a system to equilibrium correlation functions, and the second FDT relates the memory friction kernel in the GLE to the stochastic force. We find that the validity of the first FDT depends strongly on the strength of the external driving: it is fulfilled close to equilibrium and breaks down far from it. In contrast, we observe that the second FDT is always fulfilled. We provide a mathematical argument why this generally holds for memory kernels reconstructed from a deterministic Volterra equation for correlation functions, even for non-stationary non-equilibrium systems. Motivated by the Mori-Zwanzig formalism, we therefore suggest to impose an orthogonality constraint on the stochastic force, which is in fact equivalent to the validity of this Volterra equation. Such GLEs automatically satisfy the second FDT and are unique, which is desirable when using GLEs for coarse-grained modeling.