A major challenge in turbulence research is to understand from first principles the origin of anomalous scaling of the velocity fluctuations in high-Reynolds-number turbulent flows. One important idea was proposed by Kolmogorov [J. Fluid Mech. {bf 13}, 82 (1962)], which attributes the anomaly to the variations of the locally averaged energy dissipation rate. Kraichnan later pointed out [J. Fluid Mech. {bf 62}, 305 (1973)] that the locally averaged energy dissipation rate is not an inertial-range quantity and a proper inertial-range quantity would be the local energy transfer rate. As a result, Kraichnans idea attributes the anomaly to the variations of the local energy transfer rate. These ideas, generally known as refined similarity hypotheses, can also be extended to study the anomalous scaling of fluctuations of an active scalar, like the temperature in turbulent convection. In this paper, we examine the validity of these refined similarity hypotheses and their extensions to an active scalar in shell models of turbulence. We find that Kraichnans refined similarity hypothesis and its extension are valid.