Resonant soft x-ray scattering from stepped surfaces of SrTiO3


Abstract in English

We studied the resonant diffraction signal from stepped surfaces of SrTiO3 at the Ti 2p -> 3d (L2,3) resonance in comparison with x-ray absorption (XAS) and specular reflectivity data. The steps on the surface form an artificial superstructure suited as a model system for resonant soft x-ray diffraction. A small step density on the surface is sufficient to produce a well defined diffraction peak, showing the high sensitivity of the method. At larger incidence angles, the resonant diffraction spectrum from the steps on the surface resembles the spectrum for specular reflectivity. Both deviate from the XAS data in the relative peak intensities and positions of the peak maxima. We determined the optical parameters of the sample across the resonance and found that the differences between the XAS and scattering spectra reflect the different quantities probed in the different signals. When recorded at low incidence or detection angles, XAS and specular reflectivity spectra are distorted by the changes of the angle of total reflection with energy. Also the step peak spectra, though less affected, show an energy shift of the peak maxima in grazing incidence geometry.

Download