Brane world corrections to scalar vacuum force in RSII-p


Abstract in English

Vacuum force is an interesting low energy test for brane worlds due to its dependence on fields modes and its role in submillimeter gravity experiments. In this work we generalize a previous model example: the scalar field vacuum force between two parallel plates lying in the brane of a Randall-Sundrum scenario extended by $p$ compact dimensions (RSII-$p$). Upon use of Greens function technique, for the massless scalar field, the 4D force is obtained from a zero mode while corrections turn out attractive and depend on the separation between plates as $l^{-(6+p)}$. For the massive scalar field a quasilocalized mode yields the 4D force with attractive corrections behaving like $l^{-(10+p)}$. Corrections are negligible w.r.t. 4D force for $AdS_{(5+p)}$ radius less than $sim 10^{-6}$m. Although the $p=0$ case is not physically viable due to the different behavior in regard to localization for the massless scalar and electromagnetic fields it yields an useful comparison between the dimensional regularization and Greens function techniques as we describe in the discussion.

Download