Consider a reflecting diffusion in a domain in $R^d$ that acquires drift in proportion to the amount of local time spent on the boundary of the domain. We show that the stationary distribution for the joint law of the position of the reflecting process and the value of the drift vector has a product form. Moreover, the first component is the symmetrizing measure on the domain for the reflecting diffusion without inert drift, and the second component has a Gaussian distribution. We also consider processes where the drift is given in terms of the gradient of a potential.
Given a domain G, a reflection vector field d(.) on the boundary of G, and drift and dispersion coefficients b(.) and sigma(.), let L be the usual second-order elliptic operator associated with b(.) and sigma(.). Under suitable assumptions that, in particular, ensure that the associated submartingale problem is well posed, it is shown that a probability measure $pi$ on bar{G} is a stationary distribution for the corresponding reflected diffusion if and only if $pi (partial G) = 0$ and $int_{bar{G}} L f (x) pi (dx) leq 0$ for every f in a certain class of test functions. Moreover, the assumptions are shown to be satisfied by a large class of reflected diffusions in piecewise smooth multi-dimensional domains with possibly oblique reflection.
We construct a pair of related diffusions on a space of interval partitions of the unit interval $[0,1]$ that are stationary with the Poisson-Dirichlet laws with parameters (1/2,0) and (1/2,1/2) respectively. These are two particular cases of a general construction of such processes obtained by decorating the jumps of a spectrally positive Levy process with independent squared Bessel excursions. The processes of ranked interval lengths of our partitions are members of a two parameter family of diffusions introduced by Ethier and Kurtz (1981) and Petrov (2009). The latter diffusions are continuum limits of up-down Markov chains on Chinese restaurant processes. Our construction is also a step towards describing a diffusion on the space of real trees whose existence has been conjectured by Aldous.
We give a pathwise construction of a two-parameter family of purely-atomic-measure-valued diffusions in which ranked masses of atoms are stationary with the Poisson-Dirichlet$(alpha,theta)$ distributions, for $alphain (0,1)$ and $thetage 0$. This resolves a conjecture of Feng and Sun (2010). We build on our previous work on $(alpha,0)$- and $(alpha,alpha)$-interval partition evolutions. Indeed, we first extract a self-similar superprocess from the levels of stable processes whose jumps are decorated with squared Bessel excursions and distinct allelic types. We complete our construction by time-change and normalisation to unit mass. In a companion paper, we show that the ranked masses of the measure-valued processes evolve according to a two-parameter family of diffusions introduced by Petrov (2009), extending work of Ethier and Kurtz (1981). These ranked-mass diffusions arise as continuum limits of up-down Markov chains on Chinese restaurant processes.
We introduce diffusions on a space of interval partitions of the unit interval that are stationary with the Poisson-Dirichlet laws with parameters $(alpha,0)$ and $(alpha,alpha)$. The construction has two steps. The first is a general construction of interval partition processes obtained previously, by decorating the jumps of a Levy process with independent excursions. Here, we focus on the second step, which requires explicit transition kernels and what we call pseudo-stationarity. This allows us to study processes obtained from the original construction via scaling and time-change. In a sequel paper, we establish connections to diffusions on decreasing sequences introduced by Ethier and Kurtz (1981) and Petrov (2009). The latter diffusions are continuum limits of up-down Markov chains on Chinese restaurant processes. Our construction is also a step towards resolving longstanding conjectures by Feng and Sun on measure-valued Poisson-Dirichlet diffusions, and by Aldous on a continuum-tree-valued diffusion.
Suppose that $X$ is a subcritical superprocess. Under some asymptotic conditions on the mean semigroup of $X$, we prove the Yaglom limit of $X$ exists and identify all quasi-stationary distributions of $X$.