Do you want to publish a course? Click here

What is a galaxy? How Cold is Cold Dark Matter? Recent progress in Near Field Cosmology

166   0   0.0 ( 0 )
 Added by Gerry Gilmore
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

There has been a vast recent improvement in photometric and kinematic data for star clusters, Ultra Compact dwarfs, galactic nuclei, and local dSph galaxies, with Subaru contributing substantially to the photometric studies in particular. These data show that there is a bimodal distribution in half-light radii, with stable star clusters always being smaller than 35pc, while stable galaxies are always larger than 120pc. We extend the previously known observational relationships and interpret them in terms of a more fundamental pair of intrinsic properties of dark matter itself: dark matter forms cored mass distributions, with a core scale length of greater than about 100pc, and always has a maximum central mass density with a narrow range. The dark matter in dSph galaxies appears to be clustered such that there is a mean volume mass density within the stellar distribution which has the very low value of about 0.1$M_{odot}$ pc$^{-3}$. None of the dSphs displays kinematics which require the presence of an inner cusp, while in two dSphs there is evidence that the density profile is shallow (cored) in the inner regions. The maximum central dark matter density derived is model dependent, but is likely to have a mean value (averaged over a volume of radius 10pc) of about 0.1$M_{odot}$ pc$^{-3}$, which is 5GeV/c$^2$cm$^{-3}$). Galaxies are embedded in dark matter halos with these properties; smaller systems containing dark matter are not observed.



rate research

Read More

We present constraints on the mass of warm dark matter (WDM) particles derived from the Lyman-alpha flux power spectrum of 55 high- resolution HIRES spectra at 2.0 < z < 6.4. From the HIRES spectra, we obtain a lower limit of mwdm > 1.2 keV 2 sigma if the WDM consists of early decoupled thermal relics and mwdm > 5.6 keV (2 sigma) for sterile neutrinos. Adding the Sloan Digital Sky Survey Lyman-alpha flux power spectrum, we get mwdm > 4 keV and mwdm > 28 keV (2 sigma) for thermal relics and sterile neutrinos. These results improve previous constraints by a factor two.
We present cosmological hydrodynamical simulations of the formation of dwarf galaxies in a representative sample of haloes extracted from the Millennium-II Simulation. Our six haloes have a z = 0 mass of ~10^10 solar masses and show different mass assembly histories which are reflected in different star formation histories. We find final stellar masses in the range 5 x 10^7 - 10^8 solar masses, consistent with other published simulations of galaxy formation in similar mass haloes. Our final objects have structures and stellar populations consistent with dwarf elliptical and dwarf irregular galaxies. However, in a Lambda CDM universe, 10^10 solar mass haloes must typically contain galaxies with much lower stellar mass than our simulated objects if they are to match observed galaxy abundances. The dwarf galaxies formed in our own and all other current hydrodynamical simulations are more than an order of magnitude more luminous than expected for haloes of this mass. We discuss the significance and possible implications of this result.
A new kind of accelerating flat model with no dark energy that is fully dominated by cold dark matter (CDM) is investigated. The number of CDM particles is not conserved and the present accelerating stage is a consequence of the negative pressure describing the irreversible process of gravitational particle creation. A related work involving accelerating CDM cosmology has been discussed before the SNe observations [Lima, Abramo & Germano, Phys. Rev. D53, 4287 (1996)]. However, in order to have a transition from a decelerating to an accelerating regime at low redshifts, the matter creation rate proposed here includes a constant term of the order of the Hubble parameter. In this case, $H_0$ does not need to be small in order to solve the age problem and the transition happens even if the matter creation is negligible during the radiation and part of the matter dominated phase. Therefore, instead of the vacuum dominance at redshifts of the order of a few, the present accelerating stage in this sort of Einstein-de Sitter CDM cosmology is a consequence of the gravitational particle creation process. As an extra bonus, in the present scenario does not exist the coincidence problem that plagues models with dominance of dark energy. The model is able to harmonize a CDM picture with the present age of the universe, the latest measurements of the Hubble parameter and the Supernovae observations.
The axion has emerged in recent years as a leading particle candidate to provide the mysterious dark matter in the cosmos, as we review here for a general scientific audience. We describe first the historical roots of the axion in the Standard Model of particle physics and the problem of charge-parity invariance of the strong nuclear force. We then discuss how the axion emerges as a dark matter candidate, and how it is produced in the early Universe. The symmetry properties of the axion dictate the form of its interactions with ordinary matter. Astrophysical considerations restrict the particle mass and interaction strengths to a limited range, which facilitates the planning of experiments to detect the axion. A companion review discusses the exciting prospect that the axion could indeed be detected in the near term in the laboratory.
We use a pair of high resolution N-body simulations implementing two dark matter models, namely the standard cold dark matter (CDM) cosmogony and a warm dark matter (WDM) alternative where the dark matter particle is a 1.5keV thermal relic. We combine these simulations with the GALFORM semi-analytical galaxy formation model in order to explore differences between the resulting galaxy populations. We use GALFORM model variants for CDM and WDM that result in the same z=0 galaxy stellar mass function by construction. We find that most of the studied galaxy properties have the same values in these two models, indicating that both dark matter scenarios match current observational data equally well. Even in under-dense regions, where discrepancies in structure formation between CDM and WDM are expected to be most pronounced, the galaxy properties are only slightly different. The only significant difference in the local universe we find is in the galaxy populations of Local Volumes, regions of radius 1 to 8Mpc around simulated Milky Way analogues. In such regions our WDM model provides a better match to observed local galaxy number counts and is five times more likely than the CDM model to predict sub-regions within them that are as empty as the observed Local Void. Thus, a highly complete census of the Local Volume and future surveys of void regions could provide constraints on the nature of dark matter.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا