Si and Fe depletion in Galactic star-forming regions observed by the Spitzer Space Telescope


Abstract in English

We report the results of the mid-infrared spectroscopy of 14 Galactic star-forming regions with the high-resolution modules of the Infrared Spectrograph (IRS) on board the Spitzer Space Telescope. We detected [SiII] 35um, [FeII] 26um, and [FeIII] 23um as well as [SIII] 33um and H2 S(0) 28um emission lines. Using the intensity of [NII] 122um or 205um and [OI] 146um or 63um reported by previous observations in four regions, we derived the ionic abundance Si+/N+ and Fe+/N+ in the ionized gas and Si+/O0 and Fe+/O0 in the photodissociation gas. For all the targets, we derived the ionic abundance of Si+/S2+ and Fe2+/S2+ for the ionized gas. Based on photodissociation and HII region models the gas-phase Si and Fe abundance are suggested to be 3-100% and <8% of the solar abundance, respectively, for the ionized gas and 16-100% and 2-22% of the solar abundance, respectively, for the photodissociation region gas. Since the [FeII] 26um and [FeIII] 23um emissions are weak, the high sensitivity of the IRS enables to derive the gas-phase Fe abundance widely in star-forming regions. The derived gas-phase Si abundance is much larger than that in cool interstellar clouds and that of Fe. The present study indicates that 3-100% of Si atoms and <22% of Fe atoms are included in dust grains which are destroyed easily in HII regions, probably by the UV radiation. We discuss possible mechanisms to account for the observed trend; mantles which are photodesorbed by UV photons, organometallic complexes, or small grains.

Download