Near-Zero Moment Ferromagnetism in the Semiconductor SmN


Abstract in English

The magnetic behaviour of SmN has been investigated in stoichiometric polycrystalline films. All samples show ferromagnetic order with Curie temperature (T_c) of 27 +/- 3 K, evidenced by the occurrence of hysteresis below T_c. The ferromagnetic state is characterised by a very small moment and a large coercive field, exceeding even the maximum applied field of 6 T below about 15 K. The residual magnetisation at 2 K, measured after cooling in the maximum field, is 0.035 mu_B per Sm. Such a remarkably small moment results from a near cancellation of the spin and orbital contributions for Sm3+ in SmN. Coupling to an applied field is therefore weak, explaining the huge coercive field . The susceptibility in the paramagnetic phase shows temperature-independent Van Vleck and Curie-Weiss contributions. The Van Vleck contribution is in quantitative agreement with the field-induced admixture of the J=7/2 excited state and the 5/2 ground state. The Curie-Weiss contribution returns a Curie temperature that agrees with the onset of ferromagnetic hysteresis, and a conventional paramagnetic moment with an effective moment of 0.4 mu_B per Sm ion, in agreement with expectations for the crystal-field modified effective moment on the Sm3+ ions.

Download