Do you want to publish a course? Click here

Data Reduction in Intrusion Alert Correlation

145   0   0.0 ( 0 )
 Added by Uwe Aickelin
 Publication date 2008
and research's language is English




Ask ChatGPT about the research

Network intrusion detection sensors are usually built around low level models of network traffic. This means that their output is of a similarly low level and as a consequence, is difficult to analyze. Intrusion alert correlation is the task of automating some of this analysis by grouping related alerts together. Attack graphs provide an intuitive model for such analysis. Unfortunately alert flooding attacks can still cause a loss of service on sensors, and when performing attack graph correlation, there can be a large number of extraneous alerts included in the output graph. This obscures the fine structure of genuine attacks and makes them more difficult for human operators to discern. This paper explores modified correlation algorithms which attempt to minimize the impact of this attack.



rate research

Read More

Attack graphs (AG) are used to assess pathways availed by cyber adversaries to penetrate a network. State-of-the-art approaches for AG generation focus mostly on deriving dependencies between system vulnerabilities based on network scans and expert knowledge. In real-world operations however, it is costly and ineffective to rely on constant vulnerability scanning and expert-crafted AGs. We propose to automatically learn AGs based on actions observed through intrusion alerts, without prior expert knowledge. Specifically, we develop an unsupervised sequence learning system, SAGE, that leverages the temporal and probabilistic dependence between alerts in a suffix-based probabilistic deterministic finite automaton (S-PDFA) -- a model that accentuates infrequent severe alerts and summarizes paths leading to them. AGs are then derived from the S-PDFA. Tested with intrusion alerts collected through Collegiate Penetration Testing Competition, SAGE produces AGs that reflect the strategies used by participating teams. The resulting AGs are succinct, interpretable, and enable analysts to derive actionable insights, e.g., attackers tend to follow shorter paths after they have discovered a longer one.
Intrusion detection is only a starting step in securing IT infrastructure. Prediction of intrusions is the next step to provide an active defense against incoming attacks. Current intrusion prediction methods focus mainly on prediction of either intrusion type or intrusion category and do not use or provide contextual information such as source and target IP address. In addition most of them are dependant on domain knowledge and specific scenario knowledge. The proposed algorithm employs a bag-of-words model together with a hidden Markov model which not depend on specific domain knowledge. Since this algorithm depends on a training process it is adaptable to different conditions. A key advantage of the proposed algorithm is the inclusion of contextual data such as source IP address, destination IP range, alert type and alert category in its prediction, which is crucial for an eventual response. Experiments conducted using a public data set generated over 2500 alert predictions and achieved accuracy of 81% and 77% for single step and five step predictions respectively for prediction of the next alert cluster. It also achieved an accuracy of prediction of 95% and 92% for single step and five step predictions respectively for prediction of the next alert category. The proposed methods achieved a prediction accuracy improvement of 5% for alert category over existing variable length Markov chain intrusion prediction methods, while providing more information for a possible defense.
As one of the solutions to intrusion detection problems, Artificial Immune Systems (AIS) have shown their advantages. Unlike genetic algorithms, there is no one archetypal AIS, instead there are four major paradigms. Among them, the Dendritic Cell Algorithm (DCA) has produced promising results in various applications. The aim of this chapter is to demonstrate the potential for the DCA as a suitable candidate for intrusion detection problems. We review some of the commonly used AIS paradigms for intrusion detection problems and demonstrate the advantages of one particular algorithm, the DCA. In order to clearly describe the algorithm, the background to its development and a formal definition are given. In addition, improvements to the original DCA are presented and their implications are discussed, including previous work done on an online analysis component with segmentation and ongoing work on automated data preprocessing. Based on preliminary results, both improvements appear to be promising for online anomaly-based intrusion detection.
The use of artificial immune systems in intrusion detection is an appealing concept for two reasons. Firstly, the human immune system provides the human body with a high level of protection from invading pathogens, in a robust, self-organised and distributed manner. Secondly, current techniques used in computer security are not able to cope with the dynamic and increasingly complex nature of computer systems and their security. It is hoped that biologically inspired approaches in this area, including the use of immune-based systems will be able to meet this challenge. Here we collate the algorithms used, the development of the systems and the outcome of their implementation. It provides an introduction and review of the key developments within this field, in addition to making suggestions for future research.
Network intrusion detection systems are themselves becoming targets of attackers. Alert flood attacks may be used to conceal malicious activity by hiding it among a deluge of false alerts sent by the attacker. Although these types of attacks are very hard to stop completely, our aim is to present techniques that improve alert throughput and capacity to such an extent that the resources required to successfully mount the attack become prohibitive. The key idea presented is to combine a token bucket filter with a realtime correlation algorithm. The proposed algorithm throttles alert output from the IDS when an attack is detected. The attack graph used in the correlation algorithm is used to make sure that alerts crucial to forming strategies are not discarded by throttling.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا