Do you want to publish a course? Click here

Probing Shock Breakout with Serendipitous GALEX Detections of Two SNLS Type II-P Supernovae

451   0   0.0 ( 0 )
 Added by Suvi Gezari
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the serendipitous detection by GALEX of fast (<1 day) rising (>1 mag) UV emission from two Type II plateau (II-P) supernovae (SNe) at z=0.185 and 0.324 discovered by the Supernova Legacy Survey. Optical photometry and VLT spectroscopy 2 weeks after the GALEX detections link the onset of UV emission to the time of shock breakout. Using radiation hydrodynamics and non-LTE radiative transfer simulations, and starting from a standard red supergiant (RSG; Type II-P SN progenitor) star evolved self-consistently from the main sequence to iron core collapse, we model the shock breakout phase and the 55 hr that follow. The small scale height of our RSG atmosphere model suggests that the breakout signature is a thermal soft X-ray burst (lambda_peak ~ 90AA) with a duration of <~ 2000 s. Longer durations are possible but require either an extended and tenuous non-standard envelope, or an unusually dense RSG wind with dot{M} ~ 10^(-3) Msun yr^(-1). The GALEX observations miss the peak of the luminous (M_FUV ~ -20) UV burst but unambiguously capture the rise of the emission and a subsequent 2 day long plateau. The postbreakout, UV-bright plateau is a prediction of our model in which the shift of the peak of the spectral energy distribution (SED) from ~100 to ~1000AA and the ejecta expansion both counteract the decrease in bolometric luminosity from ~10^11 to ~10^9 L_sun over that period. Based on the observed detection efficiency of our study we make predictions for the breakout detection rate of the GALEX Time Domain Survey.



rate research

Read More

We present the GALEX detection of a UV burst at the time of explosion of an optically normal Type II-P supernova (PS1-13arp) from the Pan-STARRS1 survey at z=0.1665. The temperature and luminosity of the UV burst match the theoretical predictions for shock breakout in a red supergiant, but with a duration a factor of ~50 longer than expected. We compare the $NUV$ light curve of PS1-13arp to previous GALEX detections of Type IIP SNe, and find clear distinctions that indicate that the UV emission is powered by shock breakout, and not by the subsequent cooling envelope emission previously detected in these systems. We interpret the ~ 1 d duration of the UV signal with a shock breakout in the wind of a red supergiant with a pre-explosion mass-loss rate of ~ 10^-3 Msun yr^-1. This mass-loss rate is enough to prolong the duration of the shock breakout signal, but not enough to produce an excess in the optical plateau light curve or narrow emission lines powered by circumstellar interaction. This detection of non-standard, potentially episodic high mass-loss in a RSG SN progenitor has favorable consequences for the prospects of future wide-field UV surveys to detect shock breakout directly in these systems, and provide a sensitive probe of the pre-explosion conditions of SN progenitors.
Shock breakout is the brightest radiative phenomenon in a Type II supernova (SN). Although it was predicted to be bright, the direct observation is difficult due to the short duration and X-ray/ultraviolet-peaked spectra. First entire observations of the shock breakouts of Type II Plateau SNe (SNe IIP) were reported in 2008 by ultraviolet and optical observations by the {it GALEX} satellite and supernova legacy survey (SNLS), named SNLS-04D2dc and SNLS-06D1jd. We present multicolor light curves of a SN IIP, including the shock breakout and plateau, calculated with a multigroup radiation hydrodynamical code {sc STELLA} and an evolutionary progenitor model. The synthetic multicolor light curves reproduce well the observations of SNLS-04D2dc. This is the first study to reproduce the ultraviolet light curve of the shock breakout and the optical light curve of the plateau consistently. We conclude that SNLS-04D2dc is the explosion with a canonical explosion energy $1.2times10^{51}$ ergs and that its progenitor is a star with a zero-age main-sequence mass $20M_odot$ and a presupernova radius $800R_odot$. The model demonstrates that the peak apparent $B$-band magnitude of the shock breakout would be $m_{rm B}sim26.4$ mag if a SN being identical to SNLS-04D2dc occurs at a redshift $z=1$, which can be reached by 8m-class telescopes. The result evidences that the shock breakout has a great potential to detect SNe IIP at $zgsim1$.
Shock breakout is the brightest radiative phenomenon in a supernova (SN) but is difficult to be observed owing to the short duration and X-ray/ultraviolet (UV)-peaked spectra. After the first observation from the rising phase reported in 2008, its observability at high redshift is attracting enormous attention. We perform multigroup radiation hydrodynamics calculations of explosions for evolutionary presupernova models with various main-sequence masses $M_{rm MS}$, metallicities $Z$, and explosion energies $E$. We present multicolor light curves of shock breakout in Type II plateau SNe, being the most frequent core-collapse SNe, and predict apparent multicolor light curves of shock breakout at various redshifts $z$. We derive the observable SN rate and reachable redshift as functions of filter $x$ and limiting magnitude $m_{x,{rm lim}}$ by taking into account an initial mass function, cosmic star formation history, intergalactic absorption, and host galaxy extinction. We propose a realistic survey strategy optimized for shock breakout. For example, the $g$-band observable SN rate for $m_{g,{rm lim}}=27.5$ mag is 3.3 SNe degree$^{-2}$ day$^{-1}$ and a half of them locates at $zgeq1.2$. It is clear that the shock breakout is a beneficial clue to probe high-$z$ core-collapse SNe. We also establish ways to identify shock breakout and constrain SN properties from the observations of shock breakout, brightness, time scale, and color. We emphasize that the multicolor observations in blue optical bands with $sim$ hour intervals, preferably over $geq2$ continuous nights, are essential to efficiently detect, identify, and interpret shock breakout.
Type II supernovae (SNe) originate from the explosion of hydrogen-rich supergiant massive stars. Their first electromagnetic signature is the shock breakout, a short-lived phenomenon which can last from hours to days depending on the density at shock emergence. We present 26 rising optical light curves of SN II candidates discovered shortly after explosion by the High cadence Transient Survey (HiTS) and derive physical parameters based on hydrodynamical models using a Bayesian approach. We observe a steep rise of a few days in 24 out of 26 SN II candidates, indicating the systematic detection of shock breakouts in a dense circumstellar matter consistent with a mass loss rate $dot{M} > 10^{-4} M_odot yr^{-1}$ or a dense atmosphere. This implies that the characteristic hour timescale signature of stellar envelope SBOs may be rare in nature and could be delayed into longer-lived circumstellar material shock breakouts in most Type II SNe.
495 - A. Gal-Yam 2008
We present the first results from our GALEX program designed to obtain ultraviolet (UV) spectroscopy of nearby core-collapse supernovae (SNe). Our first target, SN 2005ay in the nearby galaxy NGC 3938, is a typical member of the II-P SN subclass. Our spectra show remarkable similarity to those of the prototypical type II-P event SN 1999em, and resemble also Swift observations of the recent type II-P event SN 2005cs. Taken together, the observations of these three events trace the UV spectral evolution of SNe II-P during the first month after explosion, as required in order to interpret optical observations of high-redshift SNe II-P, and to derive cross-filter K-corrections. While still highly preliminary, the apparent UV homogeneity of SNe II-P bodes well for the use of these events as cosmological probes at high redshift.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا