No Arabic abstract
Following the discovery of the Fe-pnictide superconductors, LDA band structure calculations showed that the dominant contributions to the spectral weight near the Fermi energy came from the Fe 3d orbitals. The Fermi surface is characterized by two hole surfaces around the $Gamma$ point and two electron surfaces around the M point of the 2 Fe/cell Brillouin zone. Here, we describe a 2-band model that reproduces the topology of the LDA Fermi surface and exhibits both ferromagnetic and $q=(pi,0)$ spin density wave (SDW) fluctuations. We argue that this minimal model contains the essential low energy physics of these materials.
Using an RPA approximation, we have calculated the strengths of the singlet and triplet pairing interactions which arise from the exchange of spin and orbital fluctuations for a 2-orbital model of the Fe-pnictide superconductors. When the system is doped with F, the electron pockets become dominant and we find that the strongest pairing occurs in the singlet d-wave pairing and the triplet p-wave pairing channels, which compete closely. The pairing structure in the singlet d-wave channel corresponds to a superposition of near neighbor intra-orbital singlets with a minus sign phase difference between the $d_{xz}$ and $d_{yz}$ pairs. The leading pairing configuration in the triplet channel also involves a nearest neighbor intra-orbital pairing. We find that the strengths of both the singlet and triplet pairing grow, with the singlet pairing growing faster, as the onsite Coulomb interaction approaches the value where the S=1 particle-hole susceptibility diverges.
In this work I investigate a two-band Hubbard model using the Gutzwiller wavefunction. The tight-binding part of the model was constructed to have a gapless spin-density wave state which leads to Dirac points in the bandstructure, a common feature of many iron-pnictide compounds. For quarter, half and three-quarter fillings I show that the Hunds rule coupling has a large impact on the metal-insulator transition in the paramagnetic phase. For the half-filled model in the antiferromagnetic phase, the magnetism evolves in a Stoner-like behavior and the size of the ordered moment is mainly determined by the Hubbard interaction. As the Hunds coupling plays a minor role in this state, the model does not describe a Hunds metal which is in contrast to more realistic models for iron-pnictide compounds.
In this paper we study the effects of hybridization in the superconducting properties of a two-band system. We consider the cases that these bands are formed by electronic orbitals with angular momentum, such that, the hybridization $V(mathbf{k})$ among them can be symmetric or antisymmetric under inversion symmetry. We take into account only intra-band attractive interactions in the two bands and investigate the appearance of an induced inter-band pairing gap. We show that (inter-band) superconducting orderings are induced in the total absence of attractive interaction between the two bands, which turns out to be completely dependent on the hybridization between them. For the case of antisymmetric hybridization we show that the induced inter-band superconductivity has a p-wave symmetry.
We report a Fe Kbeta x-ray emission spectroscopy study of local magnetic moments in the rare-earth doped iron pnictide Ca_{1-x}RE_xFe_2As_2 (RE=La, Pr, and Nd). In all samples studied the size of the Fe local moment is found to decrease significantly with temperature and goes from ~0.9 mu_B at T = 300 K to ~0.45 mu_B at T = 70 K. In the collapsed tetragonal (cT) phase of Nd- and Pr-doped samples (T<70K) the local moment is quenched, while the moment remains unchanged for the La-doped sample, which does not show lattice collapse. Our results show that Ca_{1-x}RE_xFe_2As_2 (RE= Pr and Nd) exhibits a spin-state transition and provide direct evidence for a non-magnetic Fe^{2+} ion in the cT-phase, as predicted by Yildirim. We argue that the gradual change of the the spin-state over a wide temperature range reveals the importance of multiorbital physics, in particular the competition between the crystal field split Fe 3d orbitals and the Hunds rule coupling.
Using x-ray absorption and resonant inelastic x-ray scattering, charge dynamics at and near the Fe $L$ edges is investigated in Fe pnictide materials, and contrasted to that measured in other Fe compounds. It is shown that the XAS and RIXS spectra for 122 and 1111 Fe pnictides are each qualitatively similar to Fe metal. Cluster diagonalization, multiplet, and density-functional calculations show that Coulomb correlations are much smaller than in the cuprates, highlighting the role of Fe metallicity and strong covalency in these materials. Best agreement with experiment is obtained using Hubbard parameters $Ulesssim 2$eV and $Japprox 0.8$eV.