No Arabic abstract
Combining infrared reflectivity, transport, susceptibility and several diffraction techniques, we find compelling evidence that CaCrO3 is a rare case of a metallic and antiferromagnetic transition-metal oxide with a three-dimensional electronic structure. LSDA calculations correctly describe the metallic behavior as well as the anisotropic magnetic ordering pattern of C type: The high Cr valence state induces via sizeable pd hybridization remarkably strong next-nearest neighbor interactions stabilizing this ordering. The subtle balance of magnetic interactions gives rise to magneto-elastic coupling, explaining pronounced structural anomalies observed at the magnetic ordering transition.
We report on the electronic structure of the perovskite oxide CaCrO3 using valence-band, core-level, and Cr 2p - 3d resonant photoemission spectroscopy (PES). Despite its antiferromagnetic order, a clear Fermi edge characteristic of a metal with dominant Cr 3d character is observed in the valence band spectrum. The Cr 3d single particle density of states are spread over 2 eV, with the photoemission spectral weight distributed in two peaks centered at ~ 1.2 eV and 0.2 eV below EF, suggestive of the coherent and incoherent states resulting from strong electron-electron correlations. Resonant PES across the Cr 2p - 3d threshold identifies a two-hole correlation satellite and yields an on-site Coulomb energy U ~4.8 eV. The metallic DOS at EF is also reflected through the presence of a well-screened feature at low binding energy side of the Cr 2p core-level spectrum. X-ray absorption spectroscopy (XAS) at Cr L3,2 and O K edges exhibit small temperature dependent changes that point towards a small change in Cr-O hybridization. The multiplet splitting in Cr 2p core level spectrum as well as the spectral shape of the Cr XAS can be reproduced using cluster model calculations which favour a negative value for charge transfer energy between the Cr 3d and O 2p states. The overall results indicate that CaCrO3 is a strongly hybridized antiferromagnetic metal, lying in the regime intermediate to Mott-Hubbard and charge-transfer systems.
A sizable transverse thermoelectric coefficient N , large to the extent that it potentially serves applications, is predicted to arise, by means of first-principles calculations, in a Skyrmion crystal assumed on EuO monolayer where carrier electrons are introduced upon a quantum anomalous Hall insulating phase of Chern number C = 2. This encourages future experiments to pursue such an effect.
The application of weak electric fields (<~ 100 V/cm) is found to dramatically enhance the lattice thermal conductivity of the antiferromagnetic (AF) insulator CaMnO(3) over a broad range of temperature about the Neel ordering point (125 K). The effect is coincident with field-induced de-trapping of bound electrons, suggesting that phonon scattering associated with short- and long-ranged AF order is suppressed in the presence of the mobilized charge. This interplay between bound charge and spin-phonon coupling might allow for the reversible control of spin fluctuations using weak external fields.
We report the thermoelectric transport properties in the orbital-ordered Mott insulating phase of Ca$_2$RuO$_4$ close to and far from equilibrium. Near equilibrium conditions where the temperature gradient is only applied to the sample, an insulating but non-monotonic temperature variation of the Seebeck coefficient is observed, which is accounted for in terms of a temperature-induced suppression of the orbital order. In non-equilibrium conditions where we have applied high electrical currents, we find that the Seebeck coefficient is anomalously increased in magnitude with increasing external current. The present result clearly demonstrates a non-thermal effect since the heating simply causes a decrease of the Seebeck coefficient, implying a non-trivial non-equilibrium effect such as a modification of the spin and orbital state in currents.
A previously unreported Pb-based perovskite PbMoO$_3$ is obtained by high-pressure and high-temperature synthesis. This material crystallizes in the $Pmbar{3}m$ cubic structure at room temperature, making it distinct from typical Pb-based perovskite oxides with a structural distortion. PbMoO$_3$ exhibits a metallic behavior down to 0.1 K with an unusual $T$-sub linear dependence of the electrical resistivity. Moreover, a large specific heat is observed at low temperatures accompanied by a peak in $C_P/T^3$ around 10 K, in marked contrast to the isostructural metallic system SrMoO$_3$. These transport and thermal properties for PbMoO$_3$, taking into account anomalously large Pb atomic displacements detected through diffraction experiments, are attributed to a low-energy vibrational mode, associated with incoherent off-centering of lone pair Pb$^{2+}$ cations. We discuss the unusual behavior of the electrical resistivity in terms of a polaron-like conduction, mediated by the strong coupling between conduction electrons and optical phonons of the local low-energy vibrational mode.