No Arabic abstract
We investigate the effect of the anisotropy of a harmonic trap on the behaviour of a fast rotating Bose-Einstein condensate. Fast rotation is reached when the rotational velocity is close to the smallest trapping frequency, thereby deconfining the condensate in the corresponding direction. A striking new feature is the non-existence of visible vortices for the ground state. The condensate can be described with the lowest Landau level set of states, but using distorted complex coordinates. We find that the coarse grained atomic density behaves like an inverted parabola with large radius in the deconfined direction, and like a fixed Gaussian in the other direction. It has no visible vortices, but invisible vortices which are needed to recover the mixed Thomas-Fermi Gaussian profile. There is a regime of small anisotropy and intermediate rotational velocity where the behaviour is similar to the isotropic case: a hexagonal Abrikosov lattice of vortices, with an inverted parabola profile.
We investigate the effect of the anisotropy of a harmonic trap on the behaviour of a fast rotating Bose-Einstein condensate. This is done in the framework of the 2D Gross-Pitaevskii equation and requires a symplectic reduction of the quadratic form defining the energy. This reduction allows us to simplify the energy on a Bargmann space and study the asymptotics of large rotational velocity. We characterize two regimes of velocity and anisotropy; in the first one where the behaviour is similar to the isotropic case, we construct an upper bound: a hexagonal Abrikosov lattice of vortices, with an inverted parabola profile. The second regime deals with very large velocities, a case in which we prove that the ground state does not display vortices in the bulk, with a 1D limiting problem. In that case, we show that the coarse grained atomic density behaves like an inverted parabola with large radius in the deconfined direction but keeps a fixed profile given by a Gaussian in the other direction. The features of this second regime appear as new phenomena.
The mean-field properties of finite-temperature Bose-Einstein gases confined in spherically symmetric harmonic traps are surveyed numerically. The solutions of the Gross-Pitaevskii (GP) and Hartree-Fock-Bogoliubov (HFB) equations for the condensate and low-lying quasiparticle excitations are calculated self-consistently using the discrete variable representation, while the most high-lying states are obtained with a local density approximation. Consistency of the theory for temperatures through the Bose condensation point requires that the thermodynamic chemical potential differ from the eigenvalue of the GP equation; the appropriate modifications lead to results that are continuous as a function of the particle interactions. The HFB equations are made gapless either by invoking the Popov approximation or by renormalizing the particle interactions. The latter approach effectively reduces the strength of the effective scattering length, increases the number of condensate atoms at each temperature, and raises the value of the transition temperature relative to the Popov approximation. The renormalization effect increases approximately with the log of the atom number, and is most pronounced at temperatures near the transition. Comparisons with the results of quantum Monte Carlo calculations and various local density approximations are presented, and experimental consequences are discussed.
We observe interlaced square vortex lattices in rotating two-component dilute-gas Bose-Einstein condensates (BEC). After preparing a hexagonal vortex lattice in a single-component BEC in an internal state $|1>$ of $^{87}$Rb atoms, we coherently transfer a fraction of the superfluid to a different internal state $|2>$. The subsequent evolution of this pseudo-spin-1/2 superfluid towards a state of offset square lattices involves an intriguing interplay of phase-separation and -mixing dynamics, both macroscopically and on the length scale of the vortex cores, and a stage of vortex turbulence. Stability of the square lattice structure is confirmed via the application of shear perturbations, after which the structure relaxes back to the square configuration. We use an interference technique to show the spatial offset between the two vortex lattices. Vortex cores in either component are filled by fluid of the other component, such that the spin-1/2 order parameter forms a Skyrmion lattice.
In a rotating two-component Bose-Einstein condensate (BEC), the traditional triangular vortex lattice can be replaced by a rectangular vortex lattice or even a structure characterized in terms of vortex sheets, depending on the interspecies interactions. We study the dynamics of this system by analyzing the Bogoliubov excitation spectrum. Excitations familiar to BEC vortex systems are found such as Tkachenko modes, hydrodynamic modes and surface waves, however, the complex two-component morphology also gives rise to new phenomena including shear flow between vortex sheets.
We report on the creation and characterization of heteronuclear KRb Feshbach molecules in an optical dipole trap. Starting from an ultracold gas mixture of K-40 and Rb-87 atoms, we create as many as 25,000 molecules at 300 nK by rf association. Optimizing the association process, we achieve a conversion efficiency of 25%. We measure the temperature dependence of the rf association process and find good agreement with a phenomenological model that has previously been applied to Feshbach molecule creation by slow magnetic-field sweeps. We also present a measurement of the binding energy of the heteronuclear molecules in the vicinity of the Feshbach resonance and provide evidence for Feshbach molecules as deeply bound as 26 MHz.