We present a relationship between spiral arm pitch angle (a measure of the tightness of spiral structure) and the mass of supermassive black holes (BHs) in the nuclei of disk galaxies. We argue that this relationship is expected through a combination of other relationships, whose existence has already been demonstrated. The recent discovery of AGN in bulgeless disk galaxies suggests that halo concentration or virial mass may be one of the determining factors in BH mass. Taken together with the result that mass concentration seems to determine spiral arm pitch angle, one would expect a relation to exist between spiral arm pitch angle and supermassive BH mass in disk galaxies, and we find that this is indeed the case. We conclude that this relationship may be important for estimating evolution in BH masses in disk galaxies out to intermediate redshifts, since regular spiral arm structure can be seen in galaxies out to z~1.