Do you want to publish a course? Click here

Orbital stability of the black soliton to the Gross-Pitaevskii equation

292   0   0.0 ( 0 )
 Added by Philippe Gravejat
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

We establish the orbital stability of the black soliton, or kink solution, $v_0(x) = th big(frac{x}{sqrt{2}} big)$, to the one-dimensional Gross-Pitaevskii equation, with respect to perturbations in the energy space.



rate research

Read More

We study the Cauchy problem for the 3D Gross-Pitaevskii equation. The global well-posedness in the natural energy space was proved by Gerard cite{Gerard}. In this paper we prove scattering for small data in the same space with some additional angular regularity, and in particular in the radial case we obtain small energy scattering.
159 - Fabrice Bethuel 2008
The purpose of this paper is to provide a rigorous mathematical proof of the existence of travelling wave solutions to the Gross-Pitaevskii equation in dimensions two and three. Our arguments, based on minimization under constraints, yield a full branch of solutions, and extend earlier results, where only a part of the branch was built. In dimension three, we also show that there are no travelling wave solutions of small energy.
We consider the 3D Gross-Pitaevskii equation begin{equation} onumber ipartial_t psi +Delta psi+(1-|psi|^2)psi=0 text{ for } psi:mathbb{R}times mathbb{R}^3 rightarrow mathbb{C} end{equation} and construct traveling waves solutions to this equation. These are solutions of the form $psi(t,x)=u(x_1,x_2,x_3-Ct)$ with a velocity $C$ of order $varepsilon|logvarepsilon|$ for a small parameter $varepsilon>0$. We build two different types of solutions. For the first type, the functions $u$ have a zero-set (vortex set) close to an union of $n$ helices for $ngeq 2$ and near these helices $u$ has degree 1. For the second type, the functions $u$ have a vortex filament of degree $-1$ near the vertical axis $e_3$ and $ngeq 4$ vortex filaments of degree $+1$ near helices whose axis is $e_3$. In both cases the helices are at a distance of order $1/(varepsilonsqrt{|log varepsilon|)}$ from the axis and are solutions to the Klein-Majda-Damodaran system, supposed to describe the evolution of nearly parallel vortex filaments in ideal fluids. Analogous solutions have been constructed recently by the authors for the stationary Gross-Pitaevskii equation, namely the Ginzburg-Landau equation. To prove the existence of these solutions we use the Lyapunov-Schmidt method and a subtle separation between even and odd Fourier modes of the error of a suitable approximation.
We show how to adapt the ideas of local energy and momentum conservation in order to derive modifications to the Gross-Pitaevskii equation which can be used phenomenologically to describe irreversible effects in a Bose-Einstein condensate. Our approach involves the derivation of a simplified quantum kinetic theory, in which all processes are treated locally. It is shown that this kinetic theory can then be transformed into a number of phase-space representations, of which the Wigner function description, although approximate, is shown to be the most advantageous. In this description, the quantum kinetic master equation takes the form of a GPE with noise and damping added according to a well-defined prescription--an equation we call the stochastic GPE. From this, a very simplified description we call the phenomenological growth equation can be derived. We use this equation to study i) the nucleation and growth of vortex lattices, and ii) nonlinear losses in a hydrogen condensate, which it is shown can lead to a curious instability phenomenon.
We provide a derivation of a more accurate version of the stochastic Gross-Pitaevskii equation, as introduced by Gardiner et al. (J. Phys. B 35,1555,(2002). The derivation does not rely on the concept of local energy and momentum conservation, and is based on a quasi-classical Wigner function representation of a high temperature master equation for a Bose gas, which includes only modes below an energy cutoff E_R that are sufficiently highly occupied (the condensate band). The modes above this cutoff (the non-condensate band) are treated as being essentially thermalized. The interaction between these two bands, known as growth and scattering processes, provide noise and damping terms in the equation of motion for the condensate band, which we call the stochastic Gross-Pitaevskii equation. This approach is distinguished by the control of the approximations made in its derivation, and by the feasibility of its numerical implementation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا