No Arabic abstract
This paper is connected with the problem of describing path metric spaces that are homeomorphic to manifolds and biLipschitz homogeneous, i.e., whose biLipschitz homeomorphism group acts transitively. Our main result is the following. Let $X = G/H$ be a homogeneous manifold of a Lie group $G$ and let $d$ be a geodesic distance on $X$ inducing the same topology. Suppose there exists a subgroup $G_S$ of $G$ that acts transitively on $X$, such that each element $g in G_S$ induces a locally biLipschitz homeomorphism of the metric space $(X,d)$. Then the metric is locally biLipschitz equivalent to a sub-Riemannian metric. Any such metric is defined by a bracket generating $G_S$-invariant sub-bundle of the tangent bundle. The result is a consequence of a more general fact that requires a transitive family of uniformly biLipschitz diffeomorphisms with a control on their differentials. It will be relevant that the group acting transitively on the space is a Lie group and so it is locally compact, since, in general, the whole group of biLipschitz maps, unlikely the isometry group, is not locally compact. Our method also gives an elementary proof of the following fact. Given a Lipschitz sub-bundle of the tangent bundle of a Finsler manifold, then both the class of piecewise differentiable curves tangent to the sub-bundle and the class of Lipschitz curves almost everywhere tangent to the sub-bundle give rise to the same Finsler-Carnot-Caratheodory metric, under the condition that the topologies induced by these distances coincide with the manifold topology.
In this paper we discuss general properties of geodesic surfaces that are locally biLipschitz homogeneous. In particular, we prove that they are locally doubling and that there exists a special doubling measure analogous to the Haar measure for locally compact groups.
Suppose that $E$ and $E$ denote real Banach spaces with dimension at least 2 and that $Dvarsubsetneq E$ and $Dvarsubsetneq E$ are uniform domains with homogeneously dense boundaries. We consider the class of all $varphi$-FQC (freely $varphi$-quasiconformal) maps of $D$ onto $D$ with bilipschitz boundary values. We show that the maps of this class are $eta$-quasisymmetric. As an application, we show that if $D$ is bounded, then maps of this class satisfy a two sided Holder condition. Moreover, replacing the class $varphi$-FQC by the smaller class of $M$-QH maps, we show that $M$-QH maps with bilipschitz boundary values are bilipschitz. Finally, we show that if $f$ is a $varphi$-FQC map which maps $D$ onto itself with identity boundary values, then there is a constant $C,,$ depending only on the function $varphi,,$ such that for all $xin D$, the quasihyperbolic distance satisfies $k_D(x,f(x))leq C$.
We prove a sharp $L^2to H^{1/2}$ stability estimate for the geodesic X-ray transform of tensor fields of order $0$, $1$ and $2$ on a simple Riemannian manifold with a suitable chosen $H^{1/2}$ norm. We show that such an estimate holds for a family of such $H^{1/2}$ norms, not topologically equivalent, but equivalent on the range of the transform. The reason for this is that the geodesic X-ray transform has a microlocally structured range.
Let n>2 and let M be an orientable complete finite volume hyperbolic n-manifold with (possibly empty) geodesic boundary having Riemannian volume vol(M) and simplicial volume ||M||. A celebrated result by Gromov and Thurston states that if M has empty boundary then the ratio between vol(M) and ||M|| is equal to v_n, where v_n is the volume of the regular ideal geodesic n-simplex in hyperbolic n-space. On the contrary, Jungreis and Kuessner proved that if the boundary of M is non-empty, then such a ratio is strictly less than v_n. We prove here that for every a>0 there exists k>0 (only depending on a and n) such that if the ratio between the volume of the boundary of M and the volume of M is less than k, then the ratio between vol(M) and ||M|| is greater than v_n-a. As a consequence we show that for every a>0 there exists a compact orientable hyperbolic n-manifold M with non-empty geodesic boundary such that the ratio between vol(M) and ||M|| is greater than v_n-a. Our argument also works in the case of empty boundary, thus providing a somewhat new proof of the proportionality principle for non-compact finite-volume hyperbolic n-manifolds without boundary.
In this work we study the issue of geodesic extendibility on complete and locally compact metric length spaces. We focus on the geometric structure of the space $(Sigma (X),d_H)$ of compact balls endowed with the Hausdorff distance and give an explicit isometry between $(Sigma (X),d_H)$ and the closed half-space $ Xtimes mathbb{R}_{ge 0}$ endowed with a taxicab metric. Among the applications we establish a group isometry between $mbox{Iso} (X,d)$ and $mbox{Iso} (Sigma (X),d_H)$ when $(X,d)$ is a Hadamard space.