Do you want to publish a course? Click here

Observational constraints on the dark energy and dark matter mutual coupling

400   0   0.0 ( 0 )
 Added by Bin Wang
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We examine different phenomenological interaction models for Dark Energy and Dark Matter by performing statistical joint analysis with observational data arising from the 182 Gold type Ia supernova samples, the shift parameter of the Cosmic Microwave Background given by the three-year Wilkinson Microwave Anisotropy Probe observations, the baryon acoustic oscillation measurement from the Sloan Digital Sky Survey and age estimates of 35 galaxies. Including the time-dependent observable, we add sensitivity of measurement and give complementary results for the fitting. The compatibility among three different data sets seem to imply that the coupling between dark energy and dark matter is a small positive value, which satisfies the requirement to solve the coincidence problem and the second law of thermodynamics, being compatible with previous estimates.



rate research

Read More

The current concordance model of cosmology is dominated by two mysterious ingredients: dark matter and dark energy. In this paper, we explore the possibility that, in fact, there exist two dark-energy components: the cosmological constant $Lambda$, with equation-of-state parameter $w_Lambda=-1$, and a `missing matter component $X$ with $w_X=-2/3$, which we introduce here to allow the evolution of the universal scale factor as a function of conformal time to exhibit a symmetry that relates the big bang to the future conformal singularity, such as in Penroses conformal cyclic cosmology. Using recent cosmological observations, we constrain the present-day energy density of missing matter to be $Omega_{X,0}=-0.034 pm 0.075$. This is consistent with the standard $Lambda$CDM model, but constraints on the energy densities of all the components are considerably broadened by the introduction of missing matter; significant relative probability exists even for $Omega_{X,0} sim 0.1$, and so the presence of a missing matter component cannot be ruled out. As a result, a Bayesian model selection analysis only slightly disfavours its introduction by 1.1 log-units of evidence. Foregoing our symmetry requirement on the conformal time evolution of the universe, we extend our analysis by allowing $w_X$ to be a free parameter. For this more generic `double dark energy model, we find $w_X = -1.01 pm 0.16$ and $Omega_{X,0} = -0.10 pm 0.56$, which is again consistent with the standard $Lambda$CDM model, although once more the posterior distributions are sufficiently broad that the existence of a second dark-energy component cannot be ruled out. The model including the second dark energy component also has an equivalent Bayesian evidence to $Lambda$CDM, within the estimation error, and is indistinguishable according to the Jeffreys guideline.
We use the Constitution supernova, the baryon acoustic oscillation, the cosmic microwave background, and the Hubble parameter data to analyze the evolution property of dark energy. We obtain different results when we fit different baryon acoustic oscillation data combined with the Constitution supernova data to the Chevallier-Polarski-Linder model. We find that the difference stems from the different values of $Omega_{m0}$. We also fit the observational data to the model independent piecewise constant parametrization. Four redshift bins with boundaries at $z=0.22$, 0.53, 0.85 and 1.8 were chosen for the piecewise constant parametrization of the equation of state parameter $w(z)$ of dark energy. We find no significant evidence for evolving $w(z)$. With the addition of the Hubble parameter, the constraint on the equation of state parameter at high redshift isimproved by 70%. The marginalization of the nuisance parameter connected to the supernova distance modulus is discussed.
We use observational data from Supernovae (SNIa) Pantheon sample, as well as from direct measurements of the Hubble parameter from the cosmic chronometers (CC) sample, in order to extract constraints on the scenario of Barrow holographic dark energy. The latter is a holographic dark energy model based on the recently proposed Barrow entropy, which arises from the modification of the black-hole surface due to quantum-gravitational effects. We first consider the case where the new deformation exponent $Delta$ is the sole model parameter, and we show that although the standard value $Delta=0$, which corresponds to zero deformation, lies within the 1$sigma$ region, a deviation is favored. In the case where we let both $Delta$ and the second model parameter to be free we find that a deviation from standard holographic dark energy is preferred. Additionally, applying the Akaike, Bayesian and Deviance Information Criteria, we conclude that the one-parameter model is statistically compatible with $Lambda$CDM paradigm, and preferred comparing to the two-parameter one. Finally, concerning the present value of the Hubble parameter we find that it is close to the Planck value.
183 - Bo-Yu Pu , Xiao-Dong Xu , Bin Wang 2014
We study a class of early dark energy models which has substantial amount of dark energy in the early epoch of the universe. We examine the impact of the early dark energy fluctuations on the growth of structure and the CMB power spectrum in the linear approximation. Furthermore we investigate the influence of the interaction between the early dark energy and the dark matter and its effect on the structure growth and CMB. We finally constrain the early dark energy model parameters and the coupling between dark sectors by confronting to different observations.
Using the data coming from the new 182 Gold type Ia supernova samples, the shift parameter of the Cosmic Microwave Background given by the three-year Wilkinson Microwave Anisotropy Probe observations, and the baryon acoustic oscillation measurement from the Sloan Digital Sky Survey, $H(z)$ and lookback time measurements, we have performed a statistical joint analysis of the interacting holographic dark energy model. Consistent parameter estimations show us that the interacting holographic dark energy model is a viable candidate to explain the observed acceleration of our universe.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا