Do you want to publish a course? Click here

Product theorems via semidefinite programming

140   0   0.0 ( 0 )
 Added by Troy Lee
 Publication date 2008
and research's language is English




Ask ChatGPT about the research

The tendency of semidefinite programs to compose perfectly under product has been exploited many times in complexity theory: for example, by Lovasz to determine the Shannon capacity of the pentagon; to show a direct sum theorem for non-deterministic communication complexity and direct product theorems for discrepancy; and in interactive proof systems to show parallel repetition theorems for restricted classes of games. Despite all these examples of product theorems--some going back nearly thirty years--it was only recently that Mittal and Szegedy began to develop a general theory to explain when and why semidefinite programs behave perfectly under product. This theory captured many examples in the literature, but there were also some notable exceptions which it could not explain--namely, an early parallel repetition result of Feige and Lovasz, and a direct product theorem for the discrepancy method of communication complexity by Lee, Shraibman, and Spalek. We extend the theory of Mittal and Szegedy to explain these cases as well. Indeed, to the best of our knowledge, our theory captures all examples of semidefinite product theorems in the literature.



rate research

Read More

We introduce a method for proving lower bounds on the efficacy of semidefinite programming (SDP) relaxations for combinatorial problems. In particular, we show that the cut, TSP, and stable set polytopes on $n$-vertex graphs are not the linear image of the feasible region of any SDP (i.e., any spectrahedron) of dimension less than $2^{n^c}$, for some constant $c > 0$. This result yields the first super-polynomial lower bounds on the semidefinite extension complexity of any explicit family of polytopes. Our results follow from a general technique for proving lower bounds on the positive semidefinite rank of a matrix. To this end, we establish a close connection between arbitrary SDPs and those arising from the sum-of-squares SDP hierarchy. For approximating maximum constraint satisfaction problems, we prove that SDPs of polynomial-size are equivalent in power to those arising from degree-$O(1)$ sum-of-squares relaxations. This result implies, for instance, that no family of polynomial-size SDP relaxations can achieve better than a 7/8-approximation for MAX-3-SAT.
119 - Erik Skau , Agnes Szanto 2017
In this paper we examine a symmetric tensor decomposition problem, the Gramian decomposition, posed as a rank minimization problem. We study the relaxation of the problem and consider cases when the relaxed solution is a solution to the original problem. In some instances of tensor rank and order, we prove generically that the solution to the relaxation will be optimal in the original. In other cases, we present interesting examples and approaches that demonstrate the intricacy of this problem.
We show a new way to round vector solutions of semidefinite programming (SDP) hierarchies into integral solutions, based on a connection between these hierarchies and the spectrum of the input graph. We demonstrate the utility of our method by providing a new SDP-hierarchy based algorithm for constraint satisfaction problems with 2-variable constraints (2-CSPs). More concretely, we show for every 2-CSP instance I a rounding algorithm for r rounds of the Lasserre SDP hierarchy for I that obtains an integral solution that is at most eps worse than the relaxations value (normalized to lie in [0,1]), as long as r > kcdotrank_{geq theta}(Ins)/poly(e) ;, where k is the alphabet size of I, $theta=poly(e/k)$, and $rank_{geq theta}(Ins)$ denotes the number of eigenvalues larger than $theta$ in the normalized adjacency matrix of the constraint graph of $Ins$. In the case that $Ins$ is a uniquegames instance, the threshold $theta$ is only a polynomial in $e$, and is independent of the alphabet size. Also in this case, we can give a non-trivial bound on the number of rounds for emph{every} instance. In particular our result yields an SDP-hierarchy based algorithm that matches the performance of the recent subexponential algorithm of Arora, Barak and Steurer (FOCS 2010) in the worst case, but runs faster on a natural family of instances, thus further restricting the set of possible hard instances for Khots Unique Games Conjecture. Our algorithm actually requires less than the $n^{O(r)}$ constraints specified by the $r^{th}$ level of the Lasserre hierarchy, and in some cases $r$ rounds of our program can be evaluated in time $2^{O(r)}poly(n)$.
We apply semidefinite programming for designing 1 to 2 symmetric qubit quantum cloners. These are optimized for the average fidelity of their joint output state with respect to a product of multiple originals. We design 1 to 2 quantum bit cloners using the numerical method for finding completely positive maps approximating a nonphysical one optimally. We discuss the properties of the so-designed cloners.
We generalize the deterministic simulation theorem of Raz and McKenzie [RM99], to any gadget which satisfies certain hitting property. We prove that inner-product and gap-Hamming satisfy this property, and as a corollary we obtain deterministic simulation theorem for these gadgets, where the gadgets input-size is logarithmic in the input-size of the outer function. This answers an open question posed by G{o}{o}s, Pitassi and Watson [GPW15]. Our result also implies the previous results for the Indexing gadget, with better parameters than was previously known. A preliminary version of the results obtained in this work appeared in [CKL+17].
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا