Do you want to publish a course? Click here

The KP hierarchy, branched covers, and triangulations

224   0   0.0 ( 0 )
 Added by Ian Goulden
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

The KP hierarchy is a completely integrable system of quadratic, partial differential equations that generalizes the KdV hierarchy. A linear combination of Schur functions is a solution to the KP hierarchy if and only if its coefficients satisfy the Plucker relations from geometry. We give a solution to the Plucker relations involving products of variables marking contents for a partition, and thus give a new proof of a content product solution to the KP hierarchy, previously given by Orlov and Shcherbin. In our main result, we specialize this content product solution to prove that the generating series for a general class of transitive ordered factorizations in the symmetric group satisfies the KP hierarchy. These factorizations appear in geometry as encodings of branched covers, and thus by specializing our transitive factorization result, we are able to prove that the generating series for two classes of branched covers satisfies the KP hierarchy. For the first of these, the double Hurwitz series, this result has been previously given by Okounkov. The second of these, that we call the m-hypermap series, contains the double Hurwitz series polynomially, as the leading coefficient in m. The m-hypermap series also specializes further, first to the series for hypermaps and then to the series for maps, both in an orientable surface. For the latter series, we apply one of the KP equations to obtain a new and remarkably simple recurrence for triangulations in a surface of given genus, with a given number of faces. This recurrence leads to explicit asymptotics for the number of triangulations with given genus and number of faces, in recent work by Bender, Gao and Richmond.



rate research

Read More

145 - Nikolaus Witte 2008
Branched covers are applied frequently in topology - most prominently in the construction of closed oriented PL d-manifolds. In particular, strong bounds for the number of sheets and the topology of the branching set are known for dimension d<=4. On the other hand, Izmestiev and Joswig described how to obtain a simplicial covering space (the partial unfolding) of a given simplicial complex, thus obtaining a simplicial branched cover [Adv. Geom. 3(2):191-255, 2003]. We present a large class of branched covers which can be constructed via the partial unfolding. In particular, for d<=4 every closed oriented PL d-manifold is the partial unfolding of some polytopal d-sphere.
Using the determinant representation of gauge transformation operator, we have shown that the general form of $tau$ function of the $q$-KP hierarchy is a q-deformed generalized Wronskian, which includes the q-deformed Wronskian as a special case. On the basis of these, we study the q-deformed constrained KP ($q$-cKP) hierarchy, i.e. $l$-constraints of $q$-KP hierarchy. Similar to the ordinary constrained KP (cKP) hierarchy, a large class of solutions of $q$-cKP hierarchy can be represented by q-deformed Wronskian determinant of functions satisfying a set of linear $q$-partial differential equations with constant coefficients. We obtained additional conditions for these functions imposed by the constraints. In particular, the effects of $q$-deformation ($q$-effects) in single $q$-soliton from the simplest $tau$ function of the $q$-KP hierarchy and in multi-$q$-soliton from one-component $q$-cKP hierarchy, and their dependence of $x$ and $q$, were also presented. Finally, we observe that $q$-soliton tends to the usual soliton of the KP equation when $xto 0$ and $qto 1$, simultaneously.
By using double branched covers, we prove that there is a 1-1 correspondence between the set of knotoids in the 2-sphere, up to orientation reversion and rotation, and knots with a strong inversion, up to conjugacy. This correspondence allows us to study knotoids through tools and invariants coming from knot theory. In particular, concepts from geometrisation generalise to knotoids, allowing us to characterise invertibility and other properties in the hyperbolic case. Moreover, with our construction we are able to detect both the trivial knotoid in the 2-sphere and the trivial planar knotoid.
269 - V.G. Kac , J.W. van de Leur 1993
Starting from free charged fermions we give equivalent definitions of the $n/$-component KP hierarchy, in terms of $tau/$-functions $tau_alpha/$ (where $alpha in M =/$ root lattice of $sl_n/$), in terms of $n times n/$ matrix valued wave functions $W_alpha(alphain M)/$, and in terms of pseudodifferential wave operators $P_alpha(alphain M)/$. These imply the deformation and the zero curvature equations. We show that the 2-component KP hierarchy contains the Davey-Stewartson system and the $ngeq3/$ component KP hierarchy continues the $n/$-wave interaction equations. This allows us to construct theis solutions.
A method is proposed to construct a new extended KP hierarchy, which includes two types of KP equation with self-consistent sources and admits reductions to k-constrained KP hierarchy and to Gelfand-Dickey hierarchy with sources. It provides a general way to construct soliton equations with sources and their Lax representations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا