Do you want to publish a course? Click here

GALEX observations of Low Surface Brightness Galaxies: UV color and star formation efficiency

171   0   0.0 ( 0 )
 Added by Samuel Boissier
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present GALEX UV observations of a sample of Low Surface Brightness (LSB) galaxies for which HI data are available, allowing us to estimate their star formation efficiency. We find that the UV light extends to larger radii than the optical light (some galaxies, but not all, look similar to the recently discovered XUV-disk galaxies). Using a standard calibration to convert the UV light into star formation rates, we obtain lower star formation efficiencies in LSB galaxies than in high surface brightness galaxies by about one order of magnitude. We show however that standard calibrations may not apply to these galaxies, as the FUV-NUV color obtained from the two GALEX bands (FUV and NUV; lambda_eff= 1516 and 2267 A, respectively) is redder than expected for star forming galaxies. This color can be interpreted as a result of internal extinction, modified Initial Mass Function or by star formation histories characterized by bursts followed by quiescent phases. Our analysis favors this latter hypothesis.



rate research

Read More

We present deep, pointed $^{12}$CO($J=2-1$) observations of three late-type LSB galaxies. The beam-size was small enough that we could probe different environments (HI maximum, HI mininum, star forming region) in these galaxies. No CO was found at any of the positions observed. We argue that the implied lack of molecular gas is real and not caused by conversion factor effects. The virtual absence of a molecular phase may explain the very low star formation rates in these galaxies.
252 - K. ONeil 2007
Massive low surface brightness galaxies have disk central surface brightnesses at least one magnitude fainter than the night sky, but total magnitudes and masses that show they are among the largest galaxies known. Like all low surface brightness (LSB) galaxies, massive LSB galaxies are often in the midst of star formation yet their stellar light has remained diffuse, raising the question of how star formation is proceeding within these galaxies. We have undertaken a multi-wavelength study to clarify the structural parameters and stellar and gas content of these enigmatic systems. The results of these studies, which include HI, CO, optical, near UV, and far UV images of the galaxies will provide the most in depth study done to date of how, when, and where star formation proceeds within this unique subset of the galaxy population.
M32, the compact elliptical-galaxy companion to the Andromeda spiral galaxy has been imaged by the Galaxy Evolution Explorer (GALEX) in two ultraviolet bands, centered at ~1500 (FUV) and 2300 Angstroms (NUV). The imaging data have been carefully decomposed so as to properly account for the complicated background contamination from the disk of M31. We have derived the surface brightness and color profiles finding a slightly positive color gradient of Delta(FUV-B)/Delta log(r)=+0.15+/-0.03 within one effective radius. Earlier data from the Ultraviolet Imaging Telescope suggested that M32 had an extremely large (negative) FUV-optical color gradient (Delta(FUV-B)/Delta log(r)<-2), inverted with respect to the majority of gradients seen in giant elliptical galaxies. Our new results show that, despite of its very low UV-upturn, M32 has similar UV properties to those observed in luminous elliptical galaxies.
125 - Raul Jimenez 1998
We investigate in detail the hypothesis that low surface brightness galaxies (LSB) differ from ordinary galaxies simply because they form in halos with large spin parameters. We compute star formation rates using the Schmidt law, assuming the same gas infall dependence on surface density as used in models of the Milky Way. We build stellar population models, predicting colours, spectra, and chemical abundances. We compare our predictions with observed values of metallicity and colours for LSB galaxies and find excellent agreement with all observables. In particular, integrated colours, colour gradients, surface brightness and metallicity match very well to the observed values of LSBs for models with ages larger than 7 Gyr and high values ($lambda > 0.05$) for the spin parameter of the halos. We also compute the global star formation rate (SFR) in the Universe due to LSBs and show that it has a flatter evolution with redshift than the corresponding SFR for normal discs. We furthermore compare the evolution in redshift of $[Zn/H]$ for our models to those observed in Damped Lyman $alpha$ systems by scite{Pettini+97} and show that Damped Lyman $alpha$ systems abundances are consistent with the predicted abundances at different radii for LSBs. Finally, we show how the required late redshift of collapse of the halo may constrain the power spectrum of fluctuations.
400 - G. Martin , S. Kaviraj , C. Laigle 2019
Our statistical understanding of galaxy evolution is fundamentally driven by objects that lie above the surface-brightness limits of current wide-area surveys (mu ~ 23 mag arcsec^-2). While both theory and small, deep surveys have hinted at a rich population of low-surface-brightness galaxies (LSBGs) fainter than these limits, their formation remains poorly understood. We use Horizon-AGN, a cosmological hydrodynamical simulation to study how LSBGs, and in particular the population of ultra-diffuse galaxies (UDGs; mu > 24.5 mag arcsec^-2), form and evolve over time. For M* > 10^8 MSun, LSBGs contribute 47, 7 and 6 per cent of the local number, mass and luminosity densities respectively (~85/11/10 per cent for M* > 10^7 MSun). Todays LSBGs have similar dark-matter fractions and angular momenta to high-surface-brightness galaxies (HSBGs; mu < 23 mag arcsec^-2), but larger effective radii (x2.5 for UDGs) and lower fractions of dense, star-forming gas (more than x6 less in UDGs than HSBGs). LSBGs originate from the same progenitors as HSBGs at z > 2. However, LSBG progenitors form stars more rapidly at early epochs. The higher resultant rate of supernova-energy injection flattens their gas-density profiles, which, in turn, creates shallower stellar profiles that are more susceptible to tidal processes. After z ~ 1, tidal perturbations broaden LSBG stellar distributions and heat their cold gas, creating the diffuse, largely gas-poor LSBGs seen today. In clusters, ram-pressure stripping provides an additional mechanism that assists in gas removal in LSBG progenitors. Our results offer insights into the formation of a galaxy population that is central to a complete understanding of galaxy evolution, and which will be a key topic of research using new and forthcoming deep-wide surveys.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا