Do you want to publish a course? Click here

Coronal Temperature as an Age Indicator

98   0   0.0 ( 0 )
 Added by Hwankyung Sung
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

The X-ray spectra of late type stars can generally be well fitted by a two temperature component model of the corona. We fnd that the temperature of both components are strong functions of stellar age, although the temperature of the hotter plasma in the corona shows a larger scatter and is probably affected by the activity of stars, such as flares. We confirm the power-law decay of the temperature of the hot plasma, but the temperature of the cool component decays linearly with log (age).



rate research

Read More

We investigate the relationship between the monthly averaged maximal speeds of coronal mass ejections (CMEs), international sunspot number (ISSN), and the geomagnetic Dst and Ap indices covering the 1996-2008 time interval (solar cycle 23). Our new findings are as follows. (1) There is a noteworthy relationship between monthly averaged maximum CME speeds and sunspot numbers, Ap and Dst indices. Various peculiarities in the monthly Dst index are correlated better with the fine structures in the CME speed profile than that in the ISSN data. (2) Unlike the sunspot numbers, the CME speed index does not exhibit a double peak maximum. Instead, the CME speed profile peaks during the declining phase of solar cycle 23. Similar to the Ap index, both CME speed and the Dst indices lag behind the sunspot numbers by several months. (3) The CME number shows a double peak similar to that seen in the sunspot numbers. The CME occurrence rate remained very high even near the minimum of the solar cycle 23, when both the sunspot number and the CME average maximum speed were reaching their minimum values. (4) A well-defined peak of the Ap index between 2002 May and 2004 August was co-temporal with the excess of the mid-latitude coronal holes during solar cycle 23. The above findings suggest that the CME speed index may be a useful indicator of both solar and geomagnetic activities. It may have advantages over the sunspot numbers, because it better reflects the intensity of Earth-directed solar eruptions.
We performed a detailed analysis of the use of [C/N] measured in red giant branch stars between the completion of the first dredge up and the red giant branch bump ([C/N]_{FDU}) as age indicator. [C/N]_{FDU} cannot give accurate ages for individual stars, but may provide a general chronology for the formation of composite populations and add constraints to analyses of red giants from surface gravity-effective temperature diagrams. We provide a theoretical calibration of [C/N]_{FDU} in terms of total metallicity [M/H] and age, for ages greater than 1 Gyr, which we tested against variations in the initial heavy element distribution (scaled-solar vs alpha-enhanced), efficiency of overshooting from MS convective cores and from the convective envelopes, variations in the initial He abundance and in the mixing length parameter. Our calibration is compared with a small sample of available measurements of [C/N]_{FDU} in star clusters and halo field stars, which at least qualitatively confirm the overall trend of the predicted [C/N]_{FDU} with age and [M/H]. The use of [C/N]_{FDU}-[M/H]-age relations obtained from independent sets of stellar evolution calculations cause age differences (for a given [C/N]_{FDU} and [M/H] pair) up to about 2~Gyr. More accurate spectroscopic measurements of [C/N]_{FDU} in star clusters with well-established ages and metallicities are required to better test theoretical calibrations of this age indicator.
A measure of nonclassicality of quantum states based on the volume of the negative part of the Wigner function is proposed. We analyze this quantity for Fock states, squeezed displaced Fock states and cat-like states defined as coherent superposition of two Gaussian wave packets.
The determination of age is a critical component in the study of a population of stellar clusters. In this letter we present a new absolute age indicator for young massive star clusters based on J-H colour. This novel method identifies clusters as older or younger than 5.7 +/- 0.8 Myr based on the appearance of the first population of red supergiant stars. We test the technique on the stellar cluster population of the nearby spiral galaxy, M83, finding good agreement with the theoretical predictions. The localisation of this technique to the near-IR promises that it may be used well into the future with space-- and ground--based missions optimised for near-IR observations.
The gas kinetic temperature ($T_K$) of various interstellar environments is often inferred from observations that can deduce level populations of atoms, ions, or molecules using spectral line observations; H I 21 cm is perhaps the most widely used with a long history. Usually the H I 21 cm line is assumed to be in thermal equilibrium and the populations are given by the Boltzmann distribution. A variety of processes, many involving Lyman alpha ($Lyalpha$), can affect the 21 cm line. Here we show how this is treated in the spectral simulation code Cloudy, and present numerical simulations of environments where this temperature indicator is used, with a detailed treatment of the physical processes that determine level populations within $H^0$. We discuss situations where this temperature indicator traces $T_K$, cases where they fail, as well as the effects of $Lyalpha$ pumping on the 21 cm spin temperature. We also show that the $Lyalpha$ excitation temperature rarely traces the gas kinetic temperature.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا