In models of maximal flavor violation (MxFV) there is at least one new scalar $Phi_{FV}$ which couples to the quarks via $Phi_{FV} q_i q_j propto xi_{ij}$ where $xi_{i3},xi_{3i} sim V_{tb}$ for $i = 1,2$ and $xi_{33} sim V_{td}$ and $V$ is the CKM matrix. In this article, we explore the potential phenomenological implications of MxFV for collider experiments. We study MxFV signals of same-sign leptons from same-sign top-quark pair production at the Tevatron and at the LHC. We show that the current Tevatron dataset has strong sensitivity to this signature, for which there are no current limits. For example, if $m_{Phi_{FV}} sim 200$ GeV and the MxFV coupling $xi$ has a natural value of $sim 1$, we expect $sim 12$ MxFV events to survive a selection requiring a pair of same-sign leptons, a tagged $b$-jet and missing transverse energy, over a background of approximately 4-5 events.