Do you want to publish a course? Click here

Nucleation and growth of a quasicrystalline monolayer: Bi adsorption on the five-fold surface of i-Al70Pd21Mn9

113   0   0.0 ( 0 )
 Added by Ronan McGrath
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Scanning tunnelling microscopy has been used to study the formation of a Bi monolayer deposited on the five-fold surface of i-Al70Pd21Mn9. Upon deposition of low sub-monolayer coverages, the nucleation of pentagonal clusters of Bi adatoms of edge length 4.9 A is observed. The clusters have a common orientation leading to a film with five-fold symmetry. By inspection of images where both the underlying surface and the Bi atoms are resolved, the pentagonal clusters are found to nucleate on pseudo-Mackay clusters truncated such that a Mn atom lies centrally in the surface plane. The density of these sites is sufficient to form a quasiperiodic framework, and subsequent adsorption of Bi atoms ultimately leads to the formation of a quasicrystalline monolayer. The initial nucleation site is different to that proposed on the basis of recent density functional theory calculations.



rate research

Read More

The structure of the Al_{70}Pd_{21}Mn_{9} surface has been investigated using high resolution scanning tunnelling microscopy (STM). From two large five-fold terraces on the surface in a short decorated Fibonacci sequence, atomically resolved surface images have been obtained. One of these terraces carries a rare local configuration in a form of a ring. The location of the corresponding sequence of terminations in the bulk model M of icosahedral i-AlPdMn based on the three-dimensional tiling T*(2F) of an F-phase has been estimated using this ring configuration and the requirement from the LEED work of Gierer et al. that the average atomic density of the terminations is 0.136 atoms per A^2. A termination contains two atomic plane layers separated by a vertical distance of 0.48 A. The position of the bulk terminations is fixed within the layers of Bergman polytopes in the model M: they are 4.08 A in the direction of the bulk from a surface of the most dense Bergman layers. From the coding windows of the top planes in terminations in M we conclude that a Penrose (P1) tiling is possible on almost all five-fold terraces. The shortest edge of the tiling P1, is either 4.8 A or 7.8 A. The experimentally derived tiling of the surface with the ring configuration has an edge-length of 8.0 +- 0.3 A and hence matches the minimal edge-length expected from the model.
An interaction potential energy between and adsorbate (Xe and Ar) and the 10-fold Al-Ni-Co quasicrystal is computed by summing over all adsorbate-substrate interatomic interactions. The quasicrystal atoms coordinates are obtained from LEED experiments and the Lennard-Jones parameters of Xe-Al, Xe-Ni and Xe-Co are found using semiempirical combining rules. The resulting potential energy function of position is highly corrugated. Monolayer adsorption of Xe and Ar on the quasicrystal surface is investigated in two cases: 1) in the limit of low coverage (Henrys law regime), and 2) at somewhat larger coverage, when interactions between adatoms are considered through the second virial coefficient, C_{AAS}. A comparison with adsorption on a flat surface indicates that the corrugation enhances the effect on Xe-Xe (Ar-Ar) interactions. The theoretical results for the low coverage adsorption regime are compared to experimental (LEED isobar) data.
We report on the synthesis of carbon nanotubes on quasicrystalline alloys. Aligned multiwalled carbon nanotubes (MWNTs) on the conducting faces of decagonal quasicrystals were synthesized using floating catalyst chemical vapor deposition. The alignment of the nanotubes was found perpendicular to the decagonal faces of the quasicrystals. A comparison between the growth and tube quality has also been made between tubes grown on various quasicrystalline and SiO2 substrates. While a significant MWNT growth was observed on decagonal quasicrystalline substrate, there was no significant growth observed on icosahedral quasicrystalline substrate. Raman spectroscopy and high resolution transmission electron microscopy (HRTEM) results show high crystalline nature of the nanotubes. Presence of continuous iron filled core in the nanotubes grown on these substrates was also observed, which is typically not seen in MWNTs grown using similar process on silicon and/or silicon dioxide substrates. The study has important implications for understanding the growth mechanism of MWNTs on conducting substrates which have potential applications as heat sinks.
The nature of the five-fold surface of Al(70)Pd(21)Mn(9) has been investigated using scanning tunneling microscopy. From high resolution images of the terraces, a tiling of the surface has been constructed using pentagonal prototiles. This tiling matches the bulk model of Boudard et. al. (J. Phys.: Cond. Matter 4, 10149, (1992)), which allows us to elucidate the atomic nature of the surface. Furthermore, it is consistent with a Penrose tiling T^*((P1)r) obtained from the geometric model based on the three-dimensional tiling T^*(2F). The results provide direct confirmation that the five-fold surface of i-Al-Pd-Mn is a termination of the bulk structure.
Realization of an elemental solid-state quasicrystal has remained a distant dream so far in spite of extensive work in this direction for almost two decades. Here, we report the discovery of quasiperiodic ordering in a thick layer of elemental Sn grown on icosahedral ($i$)-Al-Pd-Mn. The STM images and the LEED patterns of the Sn layer show specific structural signatures that portray quasiperiodicity but are distinct from the substrate. Photoemission spectroscopy reveals the existence of the pseudogap around the Fermi energy up to the maximal Sn thickness. The structure of the Sn layer is modeled as a novel form of quasicrystalline clathrate on the basis of the following: Firstly, from ab-initio theory, the energy of bulk Sn clathrate quasicrystal is lower than the high temperature metallic $beta$-Sn phase, but higher than the low temperature $alpha$-Sn phase. A comparative study of the free slab energetics shows that surface energy favors clathrate over $alpha$-Sn up to about 4 nm layer thickness, and matches $beta$-Sn for narrow window of slab thickness of 2-3 nm. Secondly, the bulk clathrate exhibits gap opening near Fermi energy, while the free slab form exhibits a pronouced pseudogap, which explains the pseudogap observed in photoemission. Thirdly, the STM images exhibit good agreement with clathrate model. We establish the adlayer-substrate compatibility based on very similar (within 1%) the cage-cage separation in the Sn clathrate and the pseudo-Mackay cluster-cluster separation on the $i$-Al-Pd-Mn surface. Furthermore, the nucleation centers of the Sn adlayer on the substrate are identified and these are shown to be a valid part of the Sn clathrate structure. Thus, based on both experiment and theory, we propose that 4 nm thick Sn adlayer deposited on 5-fold surface of $i$-Al-Pd-Mn substrate is in fact a metastable realization of elemental, clathrate family quasicrystal.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا