Featuring dense spatial distributions of engineered metallic particles, electromagnetic metamaterials exhibit simultaneously negative values of both, dielectric permittivity and magnetic permeability, within a resonance frequency band called left-handed passband. Unusual electromagnetic properties are found resulting in promising applications such as sub-wavelength resolution imaging. State-of-the-art micro/nanomanufacturing has led to resonance frequencies reaching the visible red. The common embedding of the metal particles in plastic matrices or deposition on dielectric substrates within a small area severely limits the usefulness of the materials. Here, we use UV or X-ray lithography to build comparably large areas and quantities of the first freely-suspended matrix-free metamaterials in which the metallic structures are S-string-like with their ends held by a window-frame. In vacuo spectral characterization combined with simulation reveals left-handed passbands from 1.6 to 2.2 THz. Owing to their size, the devices can be easily handled. They offer a straightforward way of making them tunable and two-dimensionally isotropic.