Do you want to publish a course? Click here

Turbulent magnetic pumping in a Babcock-Leighton solar dynamo model

207   0   0.0 ( 0 )
 Added by Gustavo Guerrero
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

The turbulent pumping effect corresponds to the transport of magnetic flux due to the presence of density and turbulence gradients in convectively unstable layers. In the induction equation it appears as an advective term and for this reason it is expected to be important in the solar and stellar dynamo processes. In this work, we have explored the effects of the turbulent pumping in a flux-dominated Babcock-Leighton solar dynamo model with a solar-like rotation law. The results reveal the importance of the pumping mechanism for solving current limitations in mean field dynamo modeling such as the storage of the magnetic flux and the latitudinal distribution of the sunspots. In the case that a meridional flow is assumed to be present only in the upper part of the convective zone, it is the full turbulent pumping that regulates both the period of the solar cycle and the latitudinal distribution of the sunspots activity.



rate research

Read More

294 - D. Passos , D. Nandy , S. Hazra 2013
Extreme solar activity fluctuations and the occurrence of solar grand minima and maxima episodes, are well established, observed features of the solar cycle. Nevertheless, such extreme activity fluctuations and the dynamics of the solar cycle during Maunder minima-like episodes remain ill-understood. We explore the origin of such extreme solar activity fluctuations and the role of dual poloidal field sources, namely the Babcock-Leighton mechanism and the mean-field alpha effect in the dynamics of the solar cycle. We mainly concentrate on entry and recovery from grand minima episodes such as the Maunder minimum and the dynamics of the solar cycle. We use a kinematic solar dynamo model with a novel set-up in which stochastic perturbations force two distinct poloidal field alpha effects. We explore different regimes of operation of these poloidal sources with distinct operating thresholds, to identify the importance of each. The perturbations are implemented independently in both hemispheres which allows one to study the level of hemispheric coupling and hemispheric asymmetry in the emergence of sunspots. From the simulations performed we identify a few different ways in which the dynamo can enter a grand minima episode. While fluctuations in any of the $alpha$ effects can trigger intermittency we find that the mean-field alpha effect is crucial for the recovery of the solar cycle from a grand minima episode which a Babcock-Leighton source alone, fails to achieve. Our simulations also demonstrate other cycle dynamics. We conclude that stochastic fluctuations in two interacting poloidal field sources working with distinct operating thresholds is a viable candidate for triggering episodes of extreme solar activity and that the mean-field alpha effect capable of working on weak, sub-equipartition fields is critical to the recovery of the solar cycle following an extended solar minimum.
Context. Solar dynamo models of Babcock-Leighton type typically assume the rise of magnetic flux tubes to be instantaneous. Solutions with high-magnetic-diffusivity have too short periods and a wrong migration of their active belts. Only the low-diffusivity regime with advective meridional flows is usually considered. Aims. In the present paper we discuss these assumptions and applied a time delay in the source term of the azimuthally averaged induction equation. This delay is set to be the rise time of magnetic flux tubes which supposedly form at the tachocline. We study the effect of the delay, which adds to the spacial non-locality a non-linear temporal one, in the advective but particularly in the diffusive regime. Methods. Fournier et al. (2017) obtained the rise time according to stellar parameters such as rotation, and the magnetic field strength at the bottom of the convection zone. These results allowed us to constrain the delay in the mean-field model used in a parameter study. Results. We identify an unknown family of solutions. These solutions self-quench, and exhibit longer periods than their non-delayed counterparts. Additionally, we demonstrate that the non-linear delay is responsible for the recover of the equatorward migration of the active belts at high turbulent diffusivities. Conclusions. By introducing a non-linear temporal non-locality (the delay) in a Babcock-Leighton dynamo model, we could obtain solutions quantitatively comparable to the solar butterfly diagram in the diffusion-dominated regime.
139 - V. V. Pipin 2012
We study the effect of turbulent drift of a large-scale magnetic field that results from the interaction of helical convective motions and differential rotation in the solar convection zone. The principal direction of the drift corresponds to the direction of the large-scale vorticity vector. Thus, the effect produces a latitudinal transport of the large-scale magnetic field in the convective zone wherever the angular velocity has a strong radial gradient. The direction of the drift depends on the sign of helicity and it is defined by the Parker-Yoshimura rule. The analytic calculations are done within the framework of mean-field magnetohydrodynamics using the minimal tau-approximation. We estimate the magnitude of the drift velocity and find that it can be several m/s near the base of the solar convection zone. The implications of this effect for the solar dynamo are illustrated on the basis of an axisymmetric mean-field dynamo model with a subsurface shear layer. We find that the helicity--vorticity pumping effect can have an influence on the features of the sunspot time--latitude diagram, producing a fast drift of the sunspot activity maximum at the rise phase of the cycle and a slow drift at the decay phase of the cycle.
84 - V. V. Pipin , N. Seehafer 2008
We revisit the possible turbulent sources of the solar dynamo. Studying axisymmetric mean-field dynamo models, we find that the large-scale poloidal magnetic field could be generated not only by the famous alpha effect, but also by the Omega x J and shear-current effects. The inclusion of these additional turbulent sources alleviates several of the known problems of solar mean-field dynamo models.
153 - F. Rincon 2015
Magnetic fields pervade the entire Universe and affect the formation and evolution of astrophysical systems from cosmological to planetary scales. The generation and dynamical amplification of extragalactic magnetic fields through cosmic times, up to $mu$Gauss levels reported in nearby galaxy clusters, near equipartition with kinetic energy of plasma motions and on scales of at least tens of kiloparsecs, is a major puzzle largely unconstrained by observations. A dynamo effect converting kinetic flow energy into magnetic energy is often invoked in that context, however extragalactic plasmas are weakly collisional (as opposed to magnetohydrodynamic fluids), and whether magnetic-field growth and sustainment through an efficient turbulent dynamo instability is possible in such plasmas is not established. Fully kinetic numerical simulations of the Vlasov equation in a six-dimensional phase space necessary to answer this question have until recently remained beyond computational capabilities. Here, we show by means of such simulations that magnetic-field amplification via a dynamo instability does occur in a stochastically-driven, non-relativistic subsonic flow of initially unmagnetized collisionless plasma. We also find that the dynamo self-accelerates and becomes entangled with kinetic instabilities as magnetization increases. The results suggest that such a plasma dynamo may be realizable in laboratory experiments, support the idea that intracluster medium (ICM) turbulence may have significantly contributed to the amplification of cluster magnetic fields up to near-equipartition levels on a timescale shorter than the Hubble time, and emphasize the crucial role of multiscale kinetic physics in high-energy astrophysical plasmas.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا