Do you want to publish a course? Click here

Phase diagrams in the three-flavor Nambu--Jona-Lasinio model with the Polyakov loop

228   0   0.0 ( 0 )
 Added by Kenji Fukushima
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

We present extensive studies on hot and dense quark matter with two light and one heavy flavors in the Nambu--Jona-Lasinio model with the Polyakov loop (so-called PNJL model). First we discuss prescription dependence in choosing the Polyakov loop effective potential and propose a simple and rather sensible ansatz. We look over quantitative comparison to the lattice measurement to confirm that the model captures thermodynamic properties correctly. We then analyze the phase structure with changing the temperature, quark chemical potential, quark masses, and coupling constants. We particularly investigate how the effective U_A(1) restoration and the induced vector-channel interaction at finite density would affect the QCD critical point.



rate research

Read More

We investigate theta-vacuum effects on the QCD phase diagram for the realistic 2+1 flavor system, using the three-flavor Polyakov-extended Nambu-Jona-Lasinio (PNJL) model and the entanglement PNJL model as an extension of the PNJL model. The theta-vacuum effects make the chiral transition sharper. For large theta-vacuum angle the chiral transition becomes first order even if the quark number chemical potential is zero, when the entanglement coupling between the chiral condensate and the Polyakov loop is taken into account. We finally propose a way of circumventing the sign problem on lattice QCD with finite theta.
We show that the magnitude of the order parameters in Polyakov-Nambu-Jona-Lasinio (PNJL) model, given by the quark condensate and the Polyakov loop, can be used as a criterium to clearly identify, without ambiguities, phases and boundaries of the strongly interacting matter, namely, the broken/restored chiral symmetry, and confinement/deconfinement regions. This structure is represented by the projection of the order parameters in the temperature-chemical potential plane, which allows a clear identification of pattern changes in the phase diagram. Such a criterium also enables the emergence of a quarkyonic phase even in the two-flavor system. We still show that this new phase diminishes due to the influence of an additional vector-type interaction in the PNJL phase diagrams, and is quite sensitive to the effect of the change of the $T_0$ parameter in the Polyakov potential. Finally, we show that the phases and boundaries constructed by our method indicate that the order parameters should be more strongly correlated, as in the case of entanglement PNJL (EPNJL) model. This result suggests a novel way to pursue further investigation of new interactions between the order parameters in order to improve the PNJL model.
We investigate the phase diagram of the so-called Polyakov--Nambu--Jona-Lasinio model at finite temperature and nonzero chemical potential with three quark flavours. Chiral and deconfinement phase transitions are discussed, and the relevant order-like parameters are analyzed. The results are compared with simple thermodynamic expectations and lattice data. A special attention is payed to the critical end point: as the strength of the flavour-mixing interaction becomes weaker, the critical end point moves to low temperatures and can even disappear.
Nambu--Jona-Lasinio-type models have been used extensively to study the dynamics of the theory of the strong interaction at finite temperature and quark chemical potential on a phenomenological level. In addition to these studies, which are often performed under the assumption that the ground state of the theory is homogeneous, searches for the existence of crystalline phases associated with inhomogeneous ground states have attracted a lot of interest in recent years. In this work, we study the Polyakov-loop extended Nambu--Jona-Lasinio model and find that the existence of a crystalline phase is stable against a variation of the parametrization of the underlying Polyakov loop potential. To this end, we adopt two prominent parametrizations. Moreover, we observe that the existence of a quarkyonic phase depends crucially on the parametrization, in particular in the regime of the phase diagram where inhomogeneous chiral condensation is favored.
We revisit the Polyakov Loop coupled Nambu-Jona-Lasinio model that maintains the Polyakov loop dynamics in the limit of zero temperature. This is of interest for astrophysical applications in the interior of neutron stars. For this purpose we re-examine the form of the potential for the deconfinement order parameter at finite baryonic densities. Since the modification of this potential at any temperature is formally equivalent to assigning a baryonic charge to gluons, we develop a more general formulation of the present model that cures this spurious effect and is normalized to match the asymptotic behaviour of the QCD equation of state given by $mathcal{O}(alpha_s^2)$ and partial $mathcal{O}(alpha_s^3ln^2alpha_s)$ perturbative results.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا