Do you want to publish a course? Click here

Neutrino mass hierarchy extraction using atmospheric neutrinos in ice

131   0   0.0 ( 0 )
 Added by Soebur Razzaque
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show that the measurements of 10 GeV atmospheric neutrinos by an upcoming array of densely packed phototubes buried deep inside the IceCube detector at the South Pole can be used to determine the neutrino mass hierarchy for values of sin^2(2theta13) close to the present bound, if the hierarchy is normal. These results are obtained for an exposure of 100 Mton years and systematic uncertainties up to 10%.



rate research

Read More

The main goal of the IceCube Deep Core Array is to search for neutrinos of astrophysical origins. Atmospheric neutrinos are commonly considered as a background for these searches. We show here that cascade measurements in the Ice Cube Deep Core Array can provide strong evidence for tau neutrino appearance in atmospheric neutrino oscillations. A careful study of these tau neutrinos is crucial, since they constitute an irreducible background for astrophysical neutrino detection.
The main goal of the IceCube Deep Core Array is to search for neutrinos of astrophysical origins. Atmospheric neutrinos are commonly considered as a background for these searches. We show that the very high statistics atmospheric neutrino data can be used to obtain precise measurements of the main oscillation parameters.
95 - R. Tomas 2007
We review how a high-statistics observation of the neutrino signal from a future galactic core-collapse supernova (SN) may be used to discriminate between different neutrino mixing scenarios. Most SN neutrinos are emitted in the accretion and cooling phase, during which the flavor-dependent differences of the emitted neutrino spectra are small and rather uncertain. Therefore the discrimination between neutrino mixing scenarios using these neutrinos should rely on observables independent of the SN neutrino spectra. We discuss two complementary methods that allow for the positive identification of the mass hierarchy without knowledge of the emitted neutrino fluxes, provided that the 13-mixing angle is large, $sin^2theta_{13}gg 10^{-5}$. These two approaches are the observation of modulations in the neutrino spectra by Earth matter effects or by the passage of shock waves through the SN envelope. If the value of the 13-mixing angle is unknown, using additionally the information encoded in the prompt neutronization $ u_e$ burst--a robust feature found in all modern SN simulations--can be sufficient to fix both the neutrino hierarchy and to decide whether $theta_{13}$ is ``small or ``large.
We reconsider neutrino decay as an explanation for atmospheric neutrino observations. We show that if the mass-difference relevant to the two mixed states u_mu and u_tau is very small (< 10^{-4} eV^2), then a very good fit to the observations can be obtained with decay of a component of u_mu to a sterile neutrino and a Majoron. We discuss how the K2K and MINOS long-baseline experiments can distinguish the decay and oscillation scenarios.
Neutrino mass hierarchy can be measured in atmospheric neutrino experiments through the observation of earth matter effects. Magnetized iron calorimeters have been shown to be good in this regard due to their charge identification capabilities. The charged current interaction of $ u_mu$ in this detector, produces a muon track and a hadron shower. The direction of the muon track can be measured very accurately. We show the improvement expected in the reach of this class of experiments to the neutrino mass hierarchy, as we improve the muon energy resolution and the muon reconstruction efficiency. We next propose to include the hadron events in the analysis, by tagging them with the zenith angle of the corresponding muon and binning the hadron data first in energy and then in zenith angle. To the best of our knowledge this way of performing the analysis of the atmospheric neutrino data has not be considered before. We show that the hadron events increase the mass hierarchy sensitivity of the experiment. Finally, we show the expected mass hierarchy sensitivity in terms of the reconstructed neutrino energy and zenith angle. We show how the detector resolutions spoil the earth matter effects in the neutrino channel and argue why the sensitivity obtained from the neutrino analysis cannot be significantly better than that obtained from the analysis using muon data alone. As a result, the best mass hierarchy sensitivity is obtained when we add the contribution of the muon and the hadron data. For $sin^22theta_{13}=0.1$, $sin^2theta_{23}=0.5$, a muon energy resolution of 2%, reconstruction efficiency of 80% and exposure of $50times 10$ kton-year, we could get up to $4.5sigma$ signal for the mass hierarchy from combining the muon and hadron data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا