A Covariant model for the nucleon and the $Delta$


Abstract in English

The covariant spectator formalism is used to model the nucleon and the $Delta$(1232) as a system of three constituent quarks with their own electromagnetic structure. The definition of the ``fixed-axis polarization states for the diquark emitted from the initial state vertex and absorbed into the final state vertex is discussed. The helicity sum over those states is evaluated and seen to be covariant. Using this approach, all four electromagnetic form factors of the nucleon, together with the {it magnetic} form factor, $G_M^*$, for the $gamma N to Delta$ transition, can be described using manifestly covariant nucleon and $Delta$ wave functions with {it zero} orbital angular momentum $L$, but a successful description of $G_M^*$ near $Q^2=0$ requires the addition of a pion cloud term not included in the class of valence quark models considered here. We also show that the pure $S$-wave model gives electric, $G_E^*$, and coulomb, $G^*_C$, transition form factors that are identically zero, showing that these form factors are sensitive to wave function components with $L>0$.

Download