Do you want to publish a course? Click here

Entanglement reciprocation using three level atoms in a lambda configuration

149   0   0.0 ( 0 )
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a scheme in which entanglement can be transferred from atoms (discrete variables) to entangled states of cavity fields (continuous variables). The cavities play the role of a kind of quantum memory for entanglement, in such a way that it is possible to retrieve it back to the atoms. In our method, two three level atoms in a lambda configuration, previously entangled, are set to interact with single mode cavity fields prepared in coherent states. During the process, one e-bit of entanglement may be deposited in the cavities in an efficient way. We also show that the stored entanglement may be transferred back to flying atoms.



rate research

Read More

Over the past few years we have built an apparatus to demonstrate the entanglement of neutral Rb atoms at optically resolvable distances using the strong interactions between Rydberg atoms. Here we review the basic physics involved in this process: loading of single atoms into individual traps, state initialization, state readout, single atom rotations, blockade-mediated manipulation of Rydberg atoms, and demonstration of entanglement.
Zero-point electromagnetic fields were first introduced to explain the origin of atomic spontaneous emission. Vacuum fluctuations associated with the zero-point energy in cavities are now utilized in quantum devices such as single-photon sources, quantum memories, switches and network nodes. Here we present three-dimensional (3D) imaging of vacuum fluctuations in a high-Q cavity based on the measurement of position-dependent emission of single atoms. Atomic position localization is achieved by using a nanoscale atomic beam aperture scannable in front of the cavity mode. The 3D structure of the cavity vacuum is reconstructed from the cavity output. The root mean squared amplitude of the vacuum field at the antinode is also measured to be 0.92+-0.07V/cm. The present work utilizing a single atom as a probe for sub-wavelength imaging demonstrates the utility of nanometre-scale technology in cavity quantum electrodynamics.
We report the experimental verification of nonclassical correlations for a four-wave-mixing process in an ensemble of cold two-level atoms, confirming theoretical predictions by Du et al. in 2007 for the violation of a Cauchy-Schwarz inequality in the system, and obtaining $R = (1.98pm0.03) leq 1$. Quantum correlations are observed in a nano-seconds timescale, in the interference between the central exciting frequency and sidebands dislocated by the detuning to the atomic resonance. They prevail without filters over the noise background coming from linear scattering from the same optical transition. These correlations are fragile with respect to processes that disturb the phase of the atomic excitation, but are robust to variations in number of atoms and to increasing light intensities.
We study the correlated transport of photons through a chain of three-level emitters that are coupled chirally to a photonic mode of a waveguide. It is found that this system can transfer a classical input into a strongly correlated state of light in a unitary manner, i.e. without the necessity of nonlinear photon losses. In particular, we shows that the collective interaction with the emitter ensemble leads to the emergence of highly antibunched light with long-range correlations upon crossing a critical length of the chain. By operating close to conditions of electromagnetically induced transparency of the three-level medium, the high degree of antibunching and photon transmission can be maintained in the presence of moderate losses. These features, combined with the robustness against number fluctuations, suggest a promising mechanism for single-photon generation and may open the door to exploring correlated quantum many-body states of light.
In this work we show how constructing Wigner functions of heterogeneous quantum systems leads to new capability in the visualization of quantum states of atoms and molecules. This method allows us to display quantum correlations (entanglement) between spin and spatial degrees of freedom (spin-orbit coupling) and between spin degrees of freedom, as well as more complex combinations of spin and spatial entanglement for the first time. This is important as there is growing recognition that such properties affect the physical characteristics, and chemistry, of atoms and molecules. Our visualizations are sufficiently accessible that, with some preparation, those with a non-technical background can gain an appreciation of subtle quantum properties of atomic and other systems. By providing new insights and modelling capability, our phase-space representation will be of great utility in understanding aspects of atomic physics and chemistry not available with current techniques.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا