Do you want to publish a course? Click here

The 2dF Redshift Survey II: UGC 8584 - Redshift Periodicity and Rings

88   0   0.0 ( 0 )
 Added by Halton Arp
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

UGC 8584 was selected by a computer program as having a number of quasars around it that obeyed the Karlsson periodicity in its reference frame. On closer examination 9 of the nearest 10 quasars turned out to be extremely close to the predicted values. Also it turned out that UGC 8584 was a disturbed triple galaxy and a strong triple radio source as well as being a strong millimeter and infrared source. Evidence for present ejection velocities of $z_v sim .01$ for the associated quasars is present and some pairing of ejections is noted. A new and important result emerges from this sample of galaxy/quasar families, namely that rings and shells of galaxies and quasars tend to surround galaxies which have active nuclei. Test cases suggest obscuration of the background around these galaxies out to about 20 or beyond. Because incidents of strong reddening are not observed, obscuring particles are suggested to be large compared to optical wavelengths. In principle, material ejected with the quasars could be of sizes of gravel or larger.



rate research

Read More

148 - Scott M. Croom 2000
We present a clustering analysis of QSOs over the redshift range z=0.3-2.9. We use a sample of 10558 QSOs taken from the preliminary catalogue of the 2dF QSO Redshift Survey (2QZ). The two-point redshift-space correlation function of QSOs is shown to follow a power law on scales s~1-35h-1Mpc. Fitting a power law to QSO clustering averaged over the redshift interval 0.3<z<2.9 we find s_0=3.99+0.28-0.34h-1Mpc and gamma=1.58+0.10-0.09 for an Einstein-de Sitter cosmology (EdS). With Omega_0=0.3 and lambda_0=0.7 the power law extends to s~60h-1Mpc with a best fit of s_0=5.69+0.42-0.50h-1Mpc and gamma=1.56+0.10-0.09. These values, measured at a mean redshift of z=1.49, are comparable to the clustering of local optically selected galaxies. We measure the evolution of QSO clustering as a function of redshift. For an EdS cosmology there is no evolution in comoving coordinates over the redshift range of the 2QZ. For Omega_0=0.3 and lambda_0=0.7 QSO clustering shows a marginal increase at high redshift. Although the clustering of QSOs is measured on large scales where linear theory should apply, the evolution of QSO clustering does not follow the linear theory predictions for growth via gravitational instability (rejected at the >99 per cent confidence level). A redshift dependent bias is required to reconcile QSO clustering observations with theory. A simple biasing model, in which QSOs have cosmologically long lifetimes (or alternatively form in peaks above a constant threshold in the density field) is acceptable in an EdS cosmology, but is only marginally acceptable if Omega_0=0.3 and lambda_0=0.7. Biasing models which assume QSOs form over a range in redshift, based on the Press-Schechter formalism are approximately consistent with QSO clustering evolution (abridged).
The 2dF Galaxy Redshift Survey (2dFGRS) is designed to measure redshifts for approximately 250000 galaxies. This paper describes the survey design, the spectroscopic observations, the redshift measurements and the survey database. The 2dFGRS uses the 2dF multi-fibre spectrograph on the Anglo-Australian Telescope, which is capable of observing 400 objects simultaneously over a 2-degree diameter field. The source catalogue for the survey is a revised and extended version of the APM galaxy catalogue, and the targets are galaxies with extinction-corrected magnitudes brighter than b_J=19.45. The main survey regions are two declination strips, one in the southern Galactic hemisphere spanning 80deg x 15deg around the SGP, and the other in the northern Galactic hemisphere spanning 75deg x 10deg along the celestial equator; in addition, there are 99 fields spread over the southern Galactic cap. The survey covers 2000 sq.deg and has a median depth of z=0.11. Adaptive tiling is used to give a highly uniform sampling rate of 93% over the whole survey region. Redshifts are measured from spectra covering 3600A-8000A at a two-pixel resolution of 9.0A and a median S/N of 13 per pixel. All redshift identifications are visually checked and assigned a quality parameter Q in the range 1-5; Q>=3 redshifts are 98.4% reliable and have an rms uncertainty of 85 km/s. The overall redshift completeness for Q>=3 redshifts is 91.8%, but this varies with magnitude from 99% for the brightest galaxies to 90% for objects at the survey limit. The 2dFGRS database is available on the WWW at http://www.mso.anu.edu.au/2dFGRS
91 - S.M. Croom 2002
We present clustering results from the 2dF QSO Redshift Survey (2QZ) which currently contains over 20,000 QSOs at z<3. The two-point correlation function of QSOs averaged over the entire survey (<z>~1.5) is found to be similar to that of local galaxies. When sub-dividing the sample as a function of redshift, we find that for an Einstein-de Sitter universe QSO clustering is constant (in comoving coordinates) over the entire redshift range probed by the 2QZ, while in a universe with Omega_0=0.3 and Lambda_0=0.7 there is a marginal increase in clustering with redshift. Sub-dividing the 2QZ on the basis of apparent magnitude we find only a slight difference between the clustering of QSOs of different apparent brightness, with the brightest QSOs having marginally stronger clustering. We have made a first measurement of the redshift space distortion of QSO clustering, with the goal of determining the value of cosmological parameters (in partcular Lambda_0) from geometric distortions. The current data do not allow us to discriminate between models, however, in combination with constraints from the evolution of mass clustering we find Omega_0=1-Lambda_0=0.23 +0.44-0.13 and beta(z~1.4)=0.39 +0.18-0.17. The full 2QZ data set will provide further cosmological constraints.
194 - T. Shanks 2001
With ~10000 QSO redshifts, the 2dF QSO Redshift Survey (2QZ) is already the biggest individual QSO survey. The aim for the survey is to have ~25000 QSO redshifts, providing an order of magnitude increase in QSO clustering statistics. We first describe the observational parameters of the 2dF QSO survey. We then describe several highlights of the survey so far; we present new estimates of the QSO luminosity function and the QSO correlation function. We also present the first estimate of the QSO power spectrum from the 2QZ catalogue, probing the form of the fluctuation power-spectrum out to the ~1000h-1Mpc scales only previously probed by COBE. We find a power spectrum which is steeper than the prediction of standard CDM and more consistent with the prediction of Lambda-CDM. The best-fit value for the power spectrum shape parameter for a range of cosmologies is Gamma=0.1+-0.1. Finally, we discuss how the complete QSO survey will be able to constrain the value of Omega_Lambda by combining results from the evolution of QSO clustering and from a geometric test of clustering isotropy.
63 - J. Einasto , M. Einasto , E. Saar 2006
We investigate properties of superclusters of galaxies found on the basis of the 2dF Galaxy Redshift Survey, and compare them with properties of superclusters from the Millennium Simulation. We study the dependence of various characteristics of superclusters on their distance from the observer, on their total luminosity, and on their multiplicity. The multiplicity is defined by the number of Density Field (DF) clusters in superclusters. Using the multiplicity we divide superclusters into four richness classes: poor, medium, rich and extremely rich. We show that superclusters are asymmetrical and have multi-branching filamentary structure, with the degree of asymmetry and filamentarity being higher for the more luminous and richer superclusters. The comparison of real superclusters with Millennium superclusters shows that most properties of simulated superclusters agree very well with real data, the main differences being in the luminosity and multiplicity distributions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا