Do you want to publish a course? Click here

Deep optical spectroscopy of extended Lyman alpha emission around three radio-quiet z=4.5 quasars

116   0   0.0 ( 0 )
 Added by Alexander Eigenbrod
 Publication date 2008
  fields Physics
and research's language is English
 Authors F. Courbin




Ask ChatGPT about the research

We report the first results of a spectroscopic search for Lyman alpha, envelopes around three z=4.5 radio-quiet quasars. Our observational strategy uses the FORS2 spectrograph attached to the UT1 of the Very Large Telescope (VLT) in the multi-slit mode. This allows us to observe simultaneously the quasars and several PSF stars. The spectra of the latter are used to remove the point-like quasar from the data, and to unveil the faint underlying Lyman alpha, envelopes associated with the quasars with unprecedented depth. We clearly detect an envelope around two of the three quasars. These envelopes measure respectively 10 and 13 in extent (i.e. 67 kpc and 87 kpc). This is 5 to 10 times larger than predicted by the models of Haiman & Rees (2001) and up to 100 times fainter. Our observations better agree with models involing a clumpy envelope as in Alam & Miralda-Escude (2002) or Chelouche et al. (2008). We find that the brighter quasars also have the brighter envelopes but that the extend of the envelopes does not depend on the quasar luminosity. Although our results are based on only two objects with a detected Lyman alpha, envelope, the quality of the spatial deblending of the spectra lends considerable hope to estimate the luminosity function and surface brightness profiles of high redshift Lyman alpha, envelopes down to F= 2-3 10^{-21} erg/s/cm^2/A. We find that the best strategy to carry out such a project is to obtain both narrow-band images and deep slit-spectra.



rate research

Read More

167 - Zheng Zheng 2010
Lyman-alpha (Lya) photons that escape the interstellar medium of star-forming galaxies may be resonantly scattered by neutral hydrogen atoms in the circumgalactic and intergalactic media, thereby increasing the angular extent of the galaxys Lya emission. We present predictions of this extended, low surface brightness Lya emission based on radiative transfer modeling in a cosmological reionization simulation. The extended emission can be detected from stacked narrowband images of Lya emitters (LAEs) or of Lyman break galaxies (LBGs). Its average surface brightness profile has a central cusp, then flattens to an approximate plateau beginning at an inner characteristic scale below ~0.2 Mpc (comoving), then steepens again beyond an outer characteristic scale of ~1 Mpc. The inner scale marks the transition from scattered light of the central source to emission from clustered sources, while the outer scale marks the spatial extent of scattered emission from these clustered sources. Both scales tend to increase with halo mass, UV luminosity, and observed Lya luminosity. The extended emission predicted by our simulation is already within reach of deep narrowband photometry using large ground-based telescopes. Such observations would test radiative transfer models of emission from LAEs and LBGs, and they would open a new window on the circumgalactic environment of high-redshift star-forming galaxies.
Spatially extended Ly-alpha sources that are faint and/or compact in coninuum are candidates for extremely young (~< 10^7 yrs) galaxies at high redshifts. We present medium-resolution (R~2000) spectroscopy of such extended Ly-alpha sources found in our previous study at z~3-5, using VLT/VIMOS. The deep spectroscopy showed that all 18 objects we observed have large equivalent widths (EWs) exceeding 100 A. For about 30% of our sample (five objects), we identified conspicuous asymmetry on the profiles of the Ly-alpha line. They show broad wing emission components on the red side, and sharp cut-off on the blue side of the Ly-alpha line. Such asymmetry is often seen in superwind galaxies known to date, and also consistent with a theoretical prediction of superwind activity. There are eight objects (8/18 ~ 40%) that have large EWs exceeding 200 A, and no clear signature of superwind activities. Such large EWs cannot be explained in terms of photo-ionization by a moderately old (>10^7 yrs) stellar population, even with a top-heavy IMF or an extremely low metallicity. These eight objects clearly show a positive correlation between the Ly-alpha luminosity and the velocity width. This suggests that these eight objects are good candidates for forming-galaxies in a gas-cooling phase.
We present spectroscopic observations of six high redshift ($z_{rm em}$ $>$ 2) quasars, which have been selected for their Lyman $alpha$ (Ly$alpha$) emission region being only partially covered by a strong proximate ($z_{rm abs}$ $sim$ $z_{rm em}$) coronagraphic damped Ly$alpha$ system (DLA). We detected spatially extended Ly$alpha$ emission envelopes surrounding these six quasars, with projected spatial extent in the range 26 $le$ $d_{rm Lyalpha}$ $le$ 51 kpc. No correlation is found between the quasar ionizing luminosity and the Ly$alpha$ luminosity of their extended envelopes. This could be related to the limited covering factor of the extended gas and/or due to the AGN being obscured in other directions than towards the observer. Indeed, we find a strong correlation between the luminosity of the envelope and its spatial extent, which suggests that the envelopes are probably ionized by the AGN. The metallicity of the coronagraphic DLAs is low and varies in the range $-$1.75 $<$ [Si/H] $<$ $-$0.63. Highly ionized gas is observed to be associated with most of these DLAs, probably indicating ionization by the central AGN. One of these DLAs has the highest AlIII/SiII ratio ever reported for any intervening and/or proximate DLA. Most of these DLAs are redshifted with respect to the quasar, implying that they might represent infalling gas probably accreted onto the quasar host galaxies through filaments.
We report an extension of our program to search for radio-quiet BL Lac candidates using intra-night optical variability (INOV) as a probe. The present INOV observations cover a well-defined representative set of 10 `radio-quiet weak-emission-line quasars (RQWLQs), selected from a newly published sample of 46 such sources, derived from the Sloan Digital Sky Survey (Data release 7). Intra-night CCD monitoring of the 10 RQWLQs was carried out in 18 sessions lasting at least 3.5 hours. For each session, differential light curves (DLCs) of the target RQWLQ were derived relative to two steady comparison stars monitored simultaneously. Combining these new data with those already published by us for 15 RQWLQs monitored in 30 sessions, we estimate an INOV duty cycle of $sim 3%$ for the RQWLQs, which appears inconsistent with BL Lacs. However, the observed INOV events (which occurred in just two of the sessions) are strong (with a fractional variability amplitude $psi >$ 10%), hence blazar-like. We briefly point out the prospects of an appreciable rise in the estimated INOV duty cycle for RQWLQs with a relatively modest increase in sensitivity for monitoring these rather faint objects.
159 - Parveen Kumar 2015
This is continuation of our programme to search for the elusive radio-quiet BL Lacs, by carrying out a systematic search for intranight optical variability (INOV) in a subset of `weak-line quasars which are already designated as `high-confidence BL Lac candidate and are also known to be radio-quiet. For 6 such radio-quiet weak-line quasars (RQWLQs), we present here new INOV observations taken in 11 sessions of duration >3 hours each. Combining these data with our previously published INOV monitoring of RQWLQs in 19 sessions yields INOV observations for a set of 15 RQWLQs monitored in 30 sessions, each lasting more than 3 hours. The 30 differential light curves, thus obtained for the 15 RQWLQs, were subjected to a statistical analysis using the F-test, and the deduced INOV characteristics of the RQWLQs then compared with those published recently for several prominent AGN classes, also applying the F-test. From our existing INOV observations, there is a hint that RQWLQs in our sample show a significantly higher INOV duty cycle than radio-quiet quasars and radio lobe-dominated quasars. Two sessions when we have detected strong (blazar-like) INOV for RQWLQs are pointed out, and these two RQWLQs are therefore the best known candidates for radio-quiet BL Lacs, deserving to be pursued. For a proper comparison with the INOV properties already established for (brighter) members of several prominent classes of AGN, a factor of 2-3 improvement in the INOV detection threshold for the RQWLQs is needed and it would be very interesting to check if that would yield a significantly higher estimate for INOV duty cycle than is found here.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا