No Arabic abstract
We study the evolution of the energy gap in a unitary Fermi gas as a function of temperature. To this end we approximate the Fermi gas by the Hubbard lattice Hamiltonian and solve using the dynamical mean-field approximation. We have found that below the critical temperature, Tc, the system is a superfluid and the energy gap is decreasing monotonously. For temperatures above Tc the system is an insulator and the corresponding energy gap is monotonously increasing.
We study phase transition from the Mott insulator to superfluid in a periodic optical lattice. Kibble-Zurek mechanism predicts buildup of winding number through random walk of BEC phases, with the step size scaling as a the third root of transition rate. We confirm this and demonstrate that this scaling accounts for the net winding number after the transition.
Thermodynamic properties of an ultracold Fermi gas in a harmonic trap are calculated within a local density approximation, using a conserving many-body formalism for the BCS to BEC crossover problem, which has been developed by Haussmann et al. [Phys. Rev. A 75, 023610 (2007)]. We focus on the unitary regime near a Feshbach resonance and determine the local density and entropy profiles and the global entropy S(E) as a function of the total energy E. Our results are in good agreement with both experimental data and previous analytical and numerical results for the thermodynamics of the unitary Fermi gas. The value of the Bertsch parameter at T=0 and the superfluid transition temperature, however, differ appreciably. We show that, well in the superfluid regime, removal of atoms near the cloud edge enables cooling far below temperatures that have been reached so far.
We present results from Monte Carlo calculations investigating the properties of the homogeneous, spin-balanced unitary Fermi gas in three dimensions. The temperature is varied across the superfluid transition allowing us to determine the temperature dependence of the chemical potential, the energy per particle and the contact density. Numerical artifacts due to finite volume and discretization are systematically studied, estimated, and reduced.
We prove the absence of a direct quantum phase transition between a superfluid and a Mott insulator in a bosonic system with generic, bounded disorder. We also prove compressibility of the system on the superfluid--insulator critical line and in its neighborhood. These conclusions follow from a general {it theorem of inclusions} which states that for any transition in a disordered system one can always find rare regions of the competing phase on either side of the transition line. Quantum Monte Carlo simulations for the disordered Bose-Hubbard model show an even stronger result, important for the nature of the Mott insulator to Bose glass phase transition: The critical disorder bound, $Delta_c$, corresponding to the onset of disorder-induced superfluidity, satisfies the relation $Delta_c > E_{rm g/2}$, with $E_{rm g/2}$ the half-width of the Mott gap in the pure system.
We propose a phenomenological approach for the equation of state of a unitary Fermi gas. The universal equation of state is parametrised in terms of Fermi-Dirac integrals. This reproduces the experimental data over the accessible range of fugacity and normalised temperature, but cannot describe the superfluid phase transition found in the MIT experiment cite{ku}. The most sensitive data for compressibility and specific heat at phase transition can, however, befitted by introducing into the grand partition function a pair of complex conjugate zeros lying in the complex fugacity plane slightly off the real axis.