Using heat conduction mechanism on a social network we develop a systematic method to predict missing values as recommendations. This method can treat very large matrices that are typical of internet communities. In particular, with an innovative, exact formulation that accommodates arbitrary boundary condition, our method is easy to use in real applications. The performance is assessed by comparing with traditional recommendation methods using real data.
Based on signaling process on complex networks, a method for identification community structure is proposed. For a network with $n$ nodes, every node is assumed to be a system which can send, receive, and record signals. Each node is taken as the initial signal source once to inspire the whole network by exciting its neighbors and then the source node is endowed a $n$d vector which recording the effects of signaling process. So by this process, the topological relationship of nodes on networks could be transferred into the geometrical structure of vectors in $n$d Euclidian space. Then the best partition of groups is determined by $F$-statistic and the final community structure is given by Fuzzy $C$-means clustering method (FCM). This method can detect community structure both in unweighted and weighted networks without any extra parameters. It has been applied to ad hoc networks and some real networks including Zachary Karate Club network and football team network. The results are compared with that of other approaches and the evidence indicates that the algorithm based on signaling process is effective.
Information overload in the modern society calls for highly efficient recommendation algorithms. In this letter we present a novel diffusion based recommendation model, with users ratings built into a transition matrix. To speed up computation we introduce a Green function method. The numerical tests on a benchmark database show that our prediction is superior to the standard recommendation methods.
We study the effect of localized attacks on a multiplex spatial network, where each layer is a network of communities. The system is considered functional when the nodes belong to the giant component in all the multiplex layers. The communities are of linear size $zeta$, such that within them any pair of nodes are linked with same probability, and additionally nodes in nearby communities are linked with a different (typically smaller) probability. This model can represent an interdependent infrastructure system of cities where within the city there are many links while between cities there are fewer links. We develop an analytical method, similar to the finite element method applied to a network with communities, and verify our analytical results by simulations. We find, both by simulation and theory, that for different parameters of connectivity and spatiality --- there is a critical localized size of damage above which it will spread and the entire system will collapse.
Community structure is one of the most relevant features encountered in numerous real-world applications of networked systems. Despite the tremendous effort of scientists working on this subject over the past few decades to characterize, model, and analyze communities, more investigations are needed to better understand the impact of community structure and its dynamics on networked systems. Here, we first focus on generative models of communities in complex networks and their role in developing strong foundation for community detection algorithms. We discuss modularity and the use of modularity maximization as the basis for community detection. Then, we overview the Stochastic Block Model, its different variants, and inference of community structures from such models. Next, we focus on time evolving networks, where existing nodes and links can disappear and/or new nodes and links may be introduced. The extraction of communities under such circumstances poses an interesting and non-trivial problem that has gained considerable interest over the last decade. We briefly discuss considerable advances made in this field recently. Finally, we focus on immunization strategies essential for targeting the influential spreaders of epidemics in modular networks. Their main goal is to select and immunize a small proportion of individuals from the whole network to control the diffusion process. Various strategies have emerged over the years suggesting different ways to immunize nodes in networks with overlapping and non-overlapping community structure. We first discuss stochastic strategies that require little or no information about the network topology at the expense of their performance. Then, we introduce deterministic strategies that have proven to be very efficient in controlling the epidemic outbreaks, but require complete knowledge of the network.
Detecting and characterizing community structure plays a crucial role in the study of networked systems. However, there is still a lack of understanding of how community structure affects the systems resilience and stability. Here, we develop a framework to study the resilience of networks with community structure based on percolation theory. We find both analytically and numerically that the interlinks (connections between the communities) affect the percolation phase transition in a manner similar to an external field in a ferromagnetic-paramagnetic spin system. We also study the universality class by defining the analogous critical exponents $delta$ and $gamma$, and find that their values for various models and in real-world co-authors networks follow fundamental scaling relations as in physical phase transitions. The methodology and results presented here not only facilitate the study of resilience of networks but also brings a fresh perspective to the understanding of phase transitions under external fields.