Spin-polarized transport through a quantum dot strongly coupled to ferromagnetic electrodes with non-collinear magnetic moments is analyzed theoretically in terms of the non-equilibrium Green function formalism. Electrons in the dot are assumed to be coupled to a phonon bath. The influence of electron-phonon coupling on tunnelling current, linear and nonlinear conductance, and on tunnel magnetoresistance is studied in detail. Variation of the main Kondo peaks and phonon satellites with the angle between magnetic moments of the leads is analyzed.
We study the spin-resolved transport through single-level quantum dots strongly coupled to ferromagnetic leads in the Kondo regime, with a focus on contact and material asymmetry-related effects. By using the numerical renormalization group method, we analyze the dependence of relevant spectral functions, linear conductance and tunnel magnetoresistance on the system asymmetry parameters. In the parallel magnetic configuration of the device the Kondo effect is generally suppressed due to the presence of exchange field, irrespective of systems asymmetry. In the antiparallel configuration, on the other hand, the Kondo effect can develop if the system is symmetric. We show that even relatively weak asymmetry may lead to the suppression of the Kondo resonance in the antiparallel configuration and thus give rise to nontrivial behavior of the tunnel magnetoresistance. In addition, by using the second-order perturbation theory we derive general formulas for the exchange field in both magnetic configurations of the system.
A correct general formula for the spin current through an interacting quantum dot coupled to ferromagnetic leads with magnetization at an arbitrary angle $theta$ is derived within the framework of the Keldysh formalism. Under asymmetric conditions, the spin current component J_{z} may change sign for $0<theta<pi$. It is shown that the spin current and spin tunneling magnetoresistance exhibit different angle dependence in the free and Coulomb blockade regimes. In the latter case, the competition of spin precession and the spin-valve effect could lead to an anomaly in the angle dependence of the spin current.
We investigate quantum dots in clean single-wall carbon nanotubes with ferromagnetic PdNi-leads in the Kondo regime. In most odd Coulomb valleys the Kondo resonance exhibits a pronounced splitting, which depends on the tunnel coupling to the leads and an external magnetic field $B$, and only weakly on gate voltage. Using numerical renormalization group calculations, we demonstrate that all salient features of the data can be understood using a simple model for the magnetic properties of the leads. The magnetoconductance at zero bias and low temperature depends in a universal way on $g mu_B (B-B_c) / k_B T_K$, where $T_K$ is the Kondo temperature and $B_c$ the external field compensating the splitting.
We investigate the spin-resolved transport properties, such as the linear conductance and the tunnel magnetoresistance, of a double quantum dot device attached to ferromagnetic leads and look for signatures of SU(4) symmetry in the Kondo regime. We show that the transport behavior greatly depends on the magnetic configuration of the device, and the spin-SU(2) as well as the orbital and spin-SU(4) Kondo effects become generally suppressed when the magnetic configuration of the leads varies from the antiparallel to the parallel one. Furthermore, a finite spin polarization of the leads lifts the spin degeneracy and drives the system from the SU(4) to an orbital-SU(2) Kondo state. We analyze in detail the crossover and show that the Kondo temperature between the two fixed points has a non-monotonic dependence on the degree of spin polarization of the leads. In terms of methods used, we characterize transport by using a combination of analytical and numerical renormalization group approaches.
Using a laterally-fabricated quantum-dot (QD) spin-valve device, we experimentally study the Kondo effect in the electron transport through a semiconductor QD with an odd number of electrons (N). In a parallel magnetic configuration of the ferromagnetic electrodes, the Kondo resonance at N = 3 splits clearly without external magnetic fields. With applying magnetic fields (B), the splitting is gradually reduced, and then the Kondo effect is almost restored at B = 1.2 T. This means that, in the Kondo regime, an inverse effective magnetic field of B ~ 1.2 T can be applied to the QD in the parallel magnetic configuration of the ferromagnetic electrodes.
R. Swirkowicz
,M. Wilczynski
,J. Barnas
.
(2008)
.
"Kondo effect in quantum dots coupled to ferromagnetic leads with noncollinear magnetizations: effects due to electron-phonon coupling"
.
Michal Wilczynski
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا