No Arabic abstract
By re-examining recently-published data from angle-resolved photoemission spectroscopy we demonstrate that, in the superconducting region of the phase diagram, the pseudogap ground state is an arc metal. This scenario is consistent with results from Raman spectroscopy, specific heat and NMR. In addition, we propose an explanation for the Fermi pockets inferred from quantum oscillations in terms of a pseudogapped bilayer Fermi surface.
We present an experimental review of the nature of the pseudogap in the cuprate superconductors. Evidence from various experimental techniques points to a common phenomenology. The pseudogap is seen in all high temperature superconductors and there is general agreement on the temperature and doping range where it exists. It is also becoming clear that the superconducting gap emerges from the normal state pseudogap. The d-wave nature of the order parameter holds for both the superconducting gap and the pseudogap. Although an extensive body of evidence is reviewed, a consensus on the origin of the pseudogap is as lacking as it is for the mechanism underlying high temperature superconductivity.
We investigate infrared manifestations of the pseudogap in the prototypical cuprate and pnictide superconductors: YBa2Cu3Oy and BaFe2As2 (Ba122) systems. We find remarkable similarities between the spectroscopic features attributable to the pseudogap in these two classes of superconductors. The hallmarks of the pseudogap state in both systems include a weak absorption feature at about 500 cm-1 followed by a featureless continuum between 500 and 1500 cm-1 in the conductivity data and a significant suppression in the scattering rate below 700 - 900 cm-1. The latter result allows us to identify the energy scale associated with the pseudogap $Delta_{PG}$. We find that in the Ba122-based materials the superconductivity-induced changes of the infrared spectra occur in the frequency region below 100 - 200 cm-1, which is much lower than the energy scale of the pseudogap. We performed theoretical analysis of the scattering rate data of the two compounds using the same model which accounts for the effects of the pseudogap and electron-boson coupling. We find that the scattering rate suppression in Ba122-based compounds below $Delta_{PG}$ is solely due to the pseudogap formation whereas the impact of the electron-boson coupling effects is limited to lower frequencies. The magnetic resonance modes used as inputs in our modeling are found to evolve with the development of the pseudogap, suggesting an intimate correlation between the pseudogap and magnetism.
The normal state in the hole underdoped copper oxide superconductors has proven to be a source of mystery for decades. The measurement of a small Fermi surface by quantum oscillations on suppression of superconductivity by high applied magnetic fields, together with complementary spectroscopic measurements in the hole underdoped copper oxide superconductors, point to a nodal electron pocket from charge order in YBa2Cu3O6+x. Here we report quantum oscillation measurements in the closely related stoichiometric material YBa2Cu4O8, which reveal similar Fermi surface properties to YBa2Cu3O6+x, despite an absence of charge order signatures in the same spectroscopic techniques such as x-ray diffraction that revealed signatures of charge order in YBa2Cu3O6+x. Fermi surface reconstruction in YBa2Cu4O8 is suggested to occur from magnetic field enhancement of charge order that is rendered fragile in zero magnetic fields because of its potential unconventional symmetry, and/or its occurrence as a subsidiary to more robust underlying electronic correlations.
We have measured the low-energy quasiparticle excitation spectrum of the electron doped high-temperature superconductors (HTS) Nd(1.85)Ce(0.15)CuO(4-y) and Pr(1.85)Ce(0.15)CuO(4-y) as a function of temperature and applied magnetic field using tunneling spectroscopy. At zero magnetic field, for these optimum doped samples no excitation gap is observed in the tunneling spectra above the transition temperature Tc. In contrast, below Tc for applied magnetic fields well above the resistively determined upper critical field, a clear excitation gap at the Fermi level is found which is comparable to the superconducting energy gap below Tc. Possible interpretations of this observation are the existence of a normal state pseudogap in the electron doped HTS or the existence of a spatially non-uniform superconducting state.
The pseudogap is one of the most pervasive phenomena of high temperature superconductors. It is attributed either to incoherent Cooper pairing setting in above the superconducting transition temperature Tc, or to a hidden order parameter competing with superconductivity. Here we use inelastic neutron scattering from underdoped YBa(2)Cu(3)O(6.6) to show that the dispersion relations of spin excitations in the superconducting and pseudogap states are qualitatively different. Specifically, the extensively studied hour glass shape of the magnetic dispersions in the superconducting state is no longer discernible in the pseudogap state and we observe an unusual vertical dispersion with pronounced in-plane anisotropy. The differences between superconducting and pseudogap states are thus more profound than generally believed, suggesting a competition between these two states. Whereas the high-energy excitations are common to both states and obey the symmetry of the copper oxide square lattice, the low-energy excitations in the pseudogap state may be indicative of collective fluctuations towards a state with broken orientational symmetry predicted in theoretical work.