No Arabic abstract
We present a microwave characterization of a DyBa$_{2}$Cu$_{3}$O$_{7-x}$ single domain, grown by the top-seeded melt-textured technique. We report the (a,b) plane field-induced surface resistance, $Delta R_s(H)$, at 48.3 GHz, measured by means of a cylindrical metal cavity in the end-wall-replacement configuration. Changes in the cavity quality factor Q against the applied magnetic field yield $Delta R_s(H)$ at fixed temperatures. The temperature range [70 K ; T_c] was explored. The magnetic field $mu_0 H <$ 0.8 T was applied along the c axis. The field dependence of $Delta R_s(H)$ does not exhibit the steep, step-like increase at low fields typical of weak-links. This result indicates the single-domain character of the sample under investigation. $Delta R_s(H)$ exhibits a nearly square-root dependence on H, as expected for fluxon motion. From the analysis of the data in terms of motion of Abrikosov vortices we estimate the temperature dependences of the London penetration depth $lambda$ and the vortex viscosity $eta$, and their zero-temperature values $lambda(0)=$165 nm and $eta(0)=$ 3 10$^{-7}$ Nsm$^{-2}$, which are found in excellent agreement with reported data in YBa$_{2}$Cu$_{3}$O$_{7-x}$ single crystals. Comparison of microwave properties with those of related samples indicate the need for reporting data as a function of T/T_c in order to obtain universal laws.
Here we study the structural and magnetic properties of the CoFeSr2YCu2O7 compound with x = 0.0 to 1.0. X-ray diffraction patterns and simulated data obtained from Rietveld refinement of the same indicate that the iron ion replacement in CoFeSr2YCu2O7 induces a change in crystal structure. The orthorhombic Ima2 space group structure of Co-1212 changes to tetragonal P4/mmm with increasing Fe ion. The XPS studies reveal that both Co and Fe ions are in mixed states for the former and in case of later.Although none of the studied as synthesized samples in CoFeSr2YCu2O7 are superconducting, the interesting structural changes in terms of their crystallisation space groups and the weak magnetism highlights the rich solid state chemistry of this class of materials.
We report a detailed study of the electronic and structural properties of the 39K superconductor mgbtwo and of several related systems of the same family, namely mgalbtwo, bebtwo, casitwo and cabesi. Our calculations, which include zone-center phonon frequencies and transport properties, are performed within the local density approximation to the density functional theory, using the full-potential linearized augmented plane wave (FLAPW) and the norm-conserving pseudopotential methods. Our results indicate essentially three-dimensional properties for these compounds; however, strongly two-dimensional $sigma$-bonding bands contribute significantly at the Fermi level. Similarities and differences between mgbtwo and bebtwo (whose superconducting properties have not been yet investigated) are analyzed in detail. Our calculations for mgalbtwo show that metal substitution cannot be fully described in a rigid band model. casitwo is studied as a function of pressure, and Be substitution in the Si planes leads to a stable compound similar in many aspects to diborides.
We report on structural and superconducting properties of La(3-x)R(x)Ni2B2N3 where La is substituted by the magnetic rare-earth elements Ce, Pr, Nd. The compounds Pr3Ni2B2N3 and Nd3Ni2B2N3 are characterized for the first time. Powder X-ray diffraction confirmed all samples R3Ni2B2N3 with R = La, Ce, Pr, Nd and their solid solutions to crystallize in the body centered tetragonal La3Ni2B2N3 structure type. Superconducting and magnetic properties of La(3-x)R(x)Ni2B2N3 were studied by resistivity, specific heat and susceptibility measurements. While La3Ni2B2N3 has a superconducting transition temperature Tc ~ 14 K, substitution of La by Ce, Pr, and Nd leads to magnetic pair breaking and, thus, to a gradual suppression of superconductivity. Pr3Ni2B2N3 exibits no long range magnetic order down to 2 K, Nd3Ni2B2N3 shows ferrimagnetic ordering below T_C = 17 K and a spin reorientation transition to a nearly antiferromagnetic state at 10 K.
Incommensurate crystal structures of spin ladder series Sr14-xCaxCu24O41 (x=3, 7, 11, 12.2) were characterized by powder neutron scattering method and refined using the superspace group Xmmm(00{gamma})ss0 (equivalent to superspace group Fmmm(0,0,1+{gamma})ss0); X stands for non-standard centering (0,0,0,0), (0,1/2,1/2,1/2), (1/2,1/2,0,0), (1/2,0,1/2,1/2)) with a modulated structure model. The Ca doping effects on the lattice parameters, atomic displacement, Cu-O distances, Cu-O bond angles and Cu bond valence sum were characterized. The refined results show that the CuO4 planar units in both chain and ladder sublattices become closer to square shape with an increase of Ca doping. The Cu bond valence sum calculation provided new evidence for the charge transfer from the chains to ladders (approximately 0.16 holes per Cu from x=0 to 12.2). The charge transfer was attributed to two different mechanisms: (a) the Cu-O bond distance shrinkage on the ladder; (b) increase of the interaction between two sublattices, resulting in Cu-O bonding between the chains and ladders. The low temperature structural refinement resulted in the similar conclusion, with a slight charge backflow to the chains.
The out-of-plane intercalate phonons of superconducting YbC6 have been measured with inelastic x-ray scattering. Model fits to this data, and previously measured out-of-plane intercalate phonons in graphite intercalation compounds (GICs), reveal surprising trends with the superconducting transition temperature. These trends suggest that superconducting GICs should be viewed as electron-doped graphite.