No Arabic abstract
Amorphous glassy materials of diverse nature -- concentrated emulsions, granular materials, pastes, molecular glasses -- display complex flow properties, intermediate between solid and liquid, which are at the root of their use in many applications. A classical feature, well documented yet not really understood, is the very non-linear nature of the flow rule relating stresses and strain rates. Using a microfluidic velocimetry technique, we characterize the flow of thin layers of concentrated emulsions, confined in gaps of different thicknesses by surfaces of different roughness. Beyond the classical non-linearities of the rheological behaviour, we evidence finite size effects in the flow behaviour and the absence of an intrinsic local flow rule. In contrast, a rather simple non-local flow rule is shown to account for all the velocity profiles. This non-locality of the dynamics is quantified by a length, characteristic of the cooperativity of the flow at these scales, that is unobservable in the liquid state (lower concentrations) and that increases with concentration in the jammed state. Beyond its practical importance for applications involving thin layers, e.g. coatings, our assessment of non-locality and cooperativity echoes observations on other glassy, jammed and granular systems, suggesting a possible fundamental universality.
In the present work, we employ broadband dielectric spectroscopy to study the molecular dynamics of the prototypical glass former glycerol confined in two microporous zeolitic imidazolate frameworks (ZIF-8 and ZIF-11) with well-defined pore diameters of 1.16 and 1.46 nm, respectively. The spectra reveal information on the modified alpha relaxation of the confined supercooled liquid, whose temperature dependence exhibits clear deviations from the typical super-Arrhenius temperature dependence of the bulk material, depending on temperature and pore size. This allows assigning well-defined cooperativity length scales of molecular motion to certain temperatures above the glass transition. We relate these and previous results on glycerol confined in other host systems to the temperature-dependent length scale deduced from nonlinear dielectric measurements. The combined experimental data can be consistently described by a critical divergence of this correlation length as expected within theoretical approaches assuming that the glass transition is due to an underlying phase transition.
We have investigated the validity of the fluctuation-dissipation theorem (FDT) and the applicability of the concept of effective temperature in a number of non-equilibrium soft glassy materials. Using a combination of passive and active microrheology to measure displacement fluctuations and the mechanical response function of probe particles embedded in the materials, we have directly tested the validity of the FDT. Our results show no violation of the FDT over several decades in frequency (1-10$^4$ Hz) for hard sphere colloidal glasses and colloidal glasses and gels of Laponite. We further extended the bandwidth of our measurements to lower frequencies (down to 0.1 Hz) using video microscopy to measure the displacement fluctuations, again without finding any deviations from the FDT.
We study a mesoscopic model for the flow of amorphous solids. The model is based on the key features identified at the microscopic level, namely peri- ods of elastic deformation interspersed with localised rearrangements of parti- cles that induce long-range elastic deformation. These long-range deformations are derived following a continuum mechanics approach, in the presence of solid boundaries, and are included in full in the model. Indeed, they mediate spatial cooperativity in the flow, whereby a localised rearrangement may lead a distant region to yield. In particular, we simulate a channel flow and find manifestations of spatial cooperativity that are consistent with published experimental obser- vations for concentrated emulsions in microchannels. Two categories of effects are distinguished. On the one hand, the coupling of regions subject to different shear rates, for instance,leads to finite shear rate fluctuations in the seemingly un- sheared plug in the centre of the channel. On the other hand, there is convinc- ing experimental evidence of a specific rheology near rough walls. We discuss diverse possible physical origins for this effect, and we suggest that it may be associated with the bumps of particles into surface asperities as they slide along the wall.
We study the free-surface deformation dynamics of an immersed glassy thin polymer film supported on a substrate, induced by an air nanobubble at the free surface.We combine analytical and numerical treatments of the glassy thin film equation, resulting from the lubrication approximation applied to the surface mobile layer of the glassy film, under the driving of an axisymmetric step function in the pressure term accounting for the nanobubbles Laplace pressure. Using the method of Greens functions, we derive a general solution for the film profile. We show that the lateral extent of the surface perturbation follows an asymptotic viscocapillary power-law behaviour in time, and that the films central height decays logarithmically in time in this regime. This process eventually leads to film rupture and dewetting at finite time, for which we provide an analytical prediction exhibiting explicitly the dependencies in surface mobility, film thickness and bubble size, among others. Finally, using finite-element numerical integration, we discuss how non-linear effects induced by the curvature and film profile can affect the evolution.
It is widely accepted that structural glasses and disordered crystals exhibit anomalies in the their thermal, mechanical and acoustic properties as manifestations of the breakdown of the long-wavelength approximation in a disordered dissipative environment. However, the same type of glassy-like anomalies (i.e. boson peak in the vibrational density of states (VDOS) above the Debye level, peak in the normalized specific heat at $Tsimeq10 K$ etc) have been recently observed also in perfectly ordered crystals, including thermoelectric compounds. Here we present a theory that predicts these surprising effects in perfectly ordered crystals as a result of low-lying (soft) optical phonons. In particular, it is seen that a strong boson peak anomaly (low-energy excess of modes) in the VDOS can be due almost entirely to the presence of low-energy optical phonons, provided that their energy is comparable to that of the acoustic modes at the Brillouin zone boundary. The boson peak is predicted also to occur in the heat capacity at low $T$. In presence of strong damping (which might be due to anharmonicities in the ordered crystals), these optical phonons contribute to the low-$T$ deviation from Debyes $T^{3}$ law, producing a linear-in-$T$ behavior which is typical of glasses, even though no assumptions of disorder whatsoever are made in the model. These findings are relevant for understanding and tuning thermal transport properties of thermoelectric compounds, and possibly for the enhancement of electron-phonon superconductivity.