Do you want to publish a course? Click here

Optical self-energy of superconducting Pb in the THz region

328   0   0.0 ( 0 )
 Added by Elisabeth Nicol
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

New THz data on the optical conductivity of Pb are presented as well as a detailed Eliashberg analysis with particular emphasis on phonon-assisted processes not included in a BCS approach. Consideration of the optical self-energy instead of the conductivity itself helps highlight the differences with BCS predictions. Predicted coherence peaks are observed in the optical scattering rates. Impurities enhance the optical effective mass at zero frequency by an order of magnitude and induce a large peak at twice the gap in agreement with theory. This work illustrates the usefulness of the optical self-energy for the analysis of data.



rate research

Read More

We perform a theoretical study of the effects of electronic correlations on the superconducting gap structure of multi-band superconductors. In particular, by comparing standard RPA-based spin-fluctuation mediated gap structures to those obtained within the FLEX formalism for an iron-based superconductor, we obtain directly the feedback effects from electron-electron interactions on the momentum-space gap structure. We show how self-energy effects can lead to an orbital inversion of the orbital-resolved spin susceptibility, and thereby invert the hierarchy of the most important orbitals channels for superconducting pairing. This effect has important consequences for the detailed gap variations on the Fermi surface. We expect such self-energy feedback on the pairing gap to be generally relevant for superconductivity in strongly correlated multi-orbital systems.
Super-high resolution laser-based angle-resolved photoemission measurements have been performed on a high temperature superconductor Bi_2Sr_2CaCu_2O_8. The band back-bending characteristic of the Bogoliubov-like quasiparticle dispersion is clearly revealed at low temperature in the superconducting state. This makes it possible for the first time to experimentally extract the complex electron self-energy and the complex gap function in the superconducting state. The resultant electron self-energy and gap function exhibit features at ~54 meV and ~40 meV, in addition to the superconducting gap-induced structure at lower binding energy and a broad featureless structure at higher binding energy. These information will provide key insight and constraints on the origin of electron pairing in high temperature superconductors.
Quasi-particle interference (QPI) measurements have provided a powerful tool for determining the momentum dependence of the gap of unconventional superconductors. Here we examine the possibility of using such measurements to probe the frequency and momentum dependence of the electron self-energy. For illustration, we calculate the QPI response function for a cuprate-like Fermi surface with an electron self-energy from an RPA approximation. Then we try to reextract the self-energy from the dispersion of the peaks in the QPI response function using different approaches. We show that in principle it is possible to extract the self-energy from the QPI response for certain nested momentum directions. We discuss some of the limitations that one faces.
The interplay between superconductivity and the pseudogap is an important aspect of cuprate physics. However, the nature of the pseudogap remains controversial, in part because different experiments have suggested different gap functions. Here we present a photon-energy-dependence angle-resolved photoemission spectroscopy (ARPES) study on Bi$_{1.5}$Pb$_{0.55}$Sr$_{1.6}$La$_{0.4}$CuO$_{6+delta}$. We find that antinodal ARPES spectra at low photon energies are dominated by background signals which can lead to a misevaluation of the spectral gap size. Once background is properly accounted for, independent of photon energy, the antinodal spectra robustly show two coexisting features at different energies dominantly attributed to the pseudogap and superconductivity, as well as an overall spectral gap which deviates from a simple d-wave form. These results support the idea that the spectral gap is distorted due to the competition between the pseudogap and superconductivity.
In high-temperature cuprate superconductors, the anti-ferromagnetic spin fluctuations are thought to have a very important role in naturally producing an attractive interaction between the electrons in the $d$-wave channel. The connection between superconductivity and spin fluctuations is expected to be especially consequential at the overdoped end point of the superconducting dome. In some materials, that point seems to coincide with a Lifshitz transition, where the Fermi surface changes from the hole-like centered at ($pi, pi$) to the electron-like, centered at the $Gamma$ point causing a loss of large momentum anti-ferromagnetic fluctuations. Here, we study the doping dependence of the electronic structure of Bi$_{1.8}$Pb$_{0.4}$Sr$_2$CuO$_{6+delta}$ in angle-resolved photoemission and find that the superconductivity vanishes at lower doping than at which the Lifshitz transition occurs. This requires a more detailed re-examination of a spin-fluctuation scenario.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا