Do you want to publish a course? Click here

Crack growth by surface diffusion in viscoelastic media

96   0   0.0 ( 0 )
 Added by Robert Spatschek
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We discuss steady state crack growth in the spirit of a free boundary problem. It turns out that mode I and mode III situations are very different from each other: In particular, mode III exhibits a pronounced transition towards unstable crack growth at higher driving forces, and the behavior close to the Griffith point is determined entirely through crack surface dissipation, whereas in mode I the fracture energy is renormalized due to a remaining finite viscous dissipation. Intermediate mixed-mode scenarios allow steady state crack growth with higher velocities, leading to the conjecture that mode I cracks can be unstable with respect to a rotation of the crack front line.



rate research

Read More

Homogeneous highly epitaxial LaSrMnO3 (LSMO) thin films have been grown on Yttria-stabilized-Zirconia (YsZ) / CeO2 buffer layers on technological relevant 4 silicon wafers using a Twente Solid State Technology B.V. (TSST) developed large area Pulsed Laser Deposition (PLD) setup. We study and show the results of the effect of an additional SrRuO3 buffer layer on the growth temperature dependent structural and magnetic properties of LSMO films. With the introduction of a thin SrRuO3 layer on top of the buffer stack, LSMO films show ferromagnetic behaviour for growth temperatures as low as 250C. We suggest that occurrence of epitaxial crystal growth of LSMO at these low growth temperatures can be understood by an improved surface diffusion, which ensures sufficient intermixing of surface species for formation of the correct phase. This intermixing is necessary because the full plume is collected on the 4 wafer resulting in a compositional varying flux of species on the wafer, in contrast to small scale experiments.
307 - Henry Proudhon 2007
This paper presents an experimental study of the fretting crack nucleation threshold, expressed in terms of loading conditions, with a cylinder/plane contact. The studied material is a damage tolerant aluminium alloy widely used in the aerospace application. Since in industrial problems, the surface quality is often variable, the impact of a unidirectional roughness is investigated via varying the roughness of the counter body in the fretting experiments. As expected, experimental results show a large effect of the contact roughness on the crack nucleation conditions. Rationalisation of the crack nucleation boundary independently of the studied roughnesses was successfully obtained by introducing the concept of effective contact area. This does show that the fretting crack nucleation of the studied material can be efficiently described by the local effective loadings inside the contact. Analytical prediction of the crack nucleation is presented with the Smith-Watson-Topper (SWT) parameter and size effect is also studied and discussed.
148 - Henry C. Fu , Thomas R. Powers , 2007
Motivated by the swimming of sperm in the non-Newtonian fluids of the female mammalian reproductive tract, we examine the swimming of filaments in the nonlinear viscoelastic Upper Convected Maxwell model. We obtain the swimming velocity and hydrodynamic force exerted on an infinitely long cylinder with prescribed beating pattern. We use these results to examine the swimming of a simplified sliding-filament model for a sperm flagellum. Viscoelasticity tends to decrease swimming speed, and changes in the beating patterns due to viscoelasticity can reverse swimming direction.
245 - R. van Gastel 2000
We report scanning tunneling microscopy observations, which imply that all atoms in a close-packed copper surface move frequently, even at room temperature. Using a low density of embedded indium `tracer atoms, we visualize the diffusive motion of surface atoms. Surprisingly, the indium atoms seem to make concerted, long jumps. Responsible for this motion is an ultra-low density of surface vacancies, diffusing rapidly within the surface. This interpretation is supported by a detailed analysis of the displacement distribution of the indium atoms, which reveals a shape characteristic for the vacancy mediated diffusion mechanism that we propose.
194 - En Yang , Zuwei Liu , Hitesh Arora 2016
We present a method for growing bit patterned magnetic recording media using directed growth of sputtered granular perpendicular magnetic recording media. The grain nucleation is templated using an epitaxial seed layer which contains Pt pillars separated by amorphous metal oxide. The scheme enables the creation of both templated data and servo regions suitable for high density hard disk drive operation. We illustrate the importance of using a process that is both topographically and chemically driven to achieve high quality media.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا