Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Data Processing, Sky Maps, and Basic Results


Abstract in English

We present new full-sky temperature and polarization maps in five frequency bands from 23 to 94 GHz, based on data from the first five years of the WMAP sky survey. The five-year maps incorporate several improvements in data processing made possible by the additional years of data and by a more complete analysis of the instrument calibration and in-flight beam response. We present several new tests for systematic errors in the polarization data and conclude that Ka band data (33 GHz) is suitable for use in cosmological analysis, after foreground cleaning. This significantly reduces the overall polarization uncertainty. With the 5 year WMAP data, we detect no convincing deviations from the minimal 6-parameter LCDM model: a flat universe dominated by a cosmological constant, with adiabatic and nearly scale-invariant Gaussian fluctuations. Using WMAP data combined with measurements of Type Ia supernovae and Baryon Acoustic Oscillations, we find (68% CL uncertainties): Omega_bh^2 = 0.02267 pm 0.00059, Omega_ch^2 = 0.1131 pm 0.0034, Omega_Lambda = 0.726 pm 0.015, n_s = 0.960 pm 0.013, tau = 0.084 pm 0.016, and Delta_R^2 = (2.445 pm 0.096) x 10^-9. From these we derive: sigma_8 = 0.812 pm 0.026, H_0 = 70.5 pm 1.3 km/s/Mpc, z_{reion} = 10.9 pm 1.4, and t_0 = 13.72 pm 0.12 Gyr. The new limit on the tensor-to-scalar ratio is r < 0.22 (95% CL). We obtain tight, simultaneous limits on the (constant) dark energy equation of state and spatial curvature: -0.14 < 1+w < 0.12 and -0.0179 < Omega_k < 0.0081 (both 95% CL). The number of relativistic degrees of freedom (e.g. neutrinos) is found to be N_{eff} = 4.4 pm 1.5, consistent with the standard value of 3.04. Models with N_{eff} = 0 are disfavored at >99.5% confidence.

Download