The behavior of magnetic ordering and the KOndo effect in the alloys, Ce2Rh(1-x)Co(x)Si3: Evidence from bulk studies for Fermi-surface change during magnetic ordering - QCP transformation and applicability of SDW pictur


Abstract in English

The results of magnetic susceptibility, electrical resistivity (rho), and heat capacity measurements as a function of temperature are reported for the alloys, Ce2Rh(1-x)Co(x)Si3, crystallizing in an AlB2-derived hexagonal strcture. Ce2RhSi3 exhibits antiferromagnetic ordering at 7 K. The Neel temperature decreases gradually with the increase in Co concentration. For x greater than 0.6, no magnetic ordering is observed down to 0.5 K. Interestingly, the x= 0.6 alloy exhibits signatutes of non-Fermi liquid behavior, while the Co end member is a Fermi liquid. Thus, a transformation of magnetic ordering state to non-magnetism via non-Fermiliquid state by isoelectronic chemical doping is evident in this solid solution. The electrical resistivity data for x= 0.2 and 0.3 alloys show an upturn at respective Neel temperatures, establishing the formation of a magnetism-induced pseudo-gap for these intermediate compositions alone as though there is a gradual Fermi surface transformation as the quantum critical point is approached.

Download