Do you want to publish a course? Click here

Chain metallicity and antiferro-paramagnetism competition in underdoped YBa$_2$Cu$_3$O$_{6+x}$: a first principles description

128   0   0.0 ( 0 )
 Added by Vincenzo Fiorentini
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We describe from advanced first principles calculations the energetics of oxygen doping and its relation to insulator-metal transitions in underdoped YBa$_2$Cu$_3$O$_{6+x}$. We find a strong tendency of doping oxygens to order into non-magnetic Cu$^{1+}$O$_x$ chains at any $x$. Ordering produces one-dimensional metallic bands, while configurations with non-aligned oxygens are insulating. The Cu$^{2+}$O$_2$ planes remain insulating and antiferromagnetic up to a threshold between $x$=0.25 and 0.5, above which a paramagnetic normal-metal state prevails. The in-plane antiferro-paramagnetic competition depends on $x$, but only weakly on the ordering state of the chains.

rate research

Read More

Polarized and unpolarized neutron diffraction has been used to search for magnetic order in YBa$_2$Cu$_3$O$_{6+x}$ superconductors. Most of the measurements were made on a high quality crystal of YBa$_2$Cu$_3$O$_{6.6}$. It is shown that this crystal has highly ordered ortho-II chain order, and a sharp superconducting transition. Inelastic scattering measurements display a very clean spin-gap and pseudogap with any intensity at 10 meV being 50 times smaller than the resonance intensity. The crystal shows a complicated magnetic order that appears to have three components. A magnetic phase is found at high temperatures that seems to stem from an impurity with a moment that is in the $a$-$b$ plane, but disordered on the crystal lattice. A second ordering occurs near the pseudogap temperature that has a shorter correlation length than the high temperature phase and a moment direction that is at least partly along the c-axis of the crystal. Its moment direction, temperature dependence, and Bragg intensities suggest that it may stem from orbital ordering of the $d$-density wave (DDW) type. An additional intensity increase occurs below the superconducting transition. The magnetic intensity in these phases does not change noticeably in a 7 Tesla magnetic field aligned approximately along the c-axis. Searches for magnetic order in YBa$_2$Cu$_3$O$_{7}$ show no signal while a small magnetic intensity is found in YBa$_2$Cu$_3$O$_{6.45}$ that is consistent with c-axis directed magnetic order. The results are contrasted with other recent neutron measurements.
We present local optical measurements of thermal diffusivity in the $ab$ plane of underdoped YBCO crystals. We find that the diffusivity anisotropy is comparable to reported values of the electrical resistivity anisotropy, suggesting that the anisotropies have the same origin. The anisotropy drops sharply below the charge order transition. We interpret our results through a strong electron-phonon scattering picture and find that both electronic and phononic contributions to the diffusivity saturate a proposed bound. Our results suggest that neither well-defined electron nor phonon quasiparticles are present in this material.
The possibility of enhancing desirable functional properties of complex materials by optical driving is motivating a series of studies of their nonlinear terahertz response. In high-Tc cuprates, large amplitude excitation of certain infrared-active lattice vibrations has been shown to induce transient features in the reflectivity suggestive of non-equilibrium superconductivity. Yet, a microscopic mechanism for these observations is still lacking. Here, we report measurements of time- and scattering-angle-dependent second-harmonic generation in YBa$_2$Cu$_3$O$_{6+x}$, taken under the same excitation conditions that result in superconductor-like terahertz reflectivity. We discover a three-order-of-magnitude amplification of a 2.5-terahertz electronic mode, which is unique because of its symmetry, momentum, and temperature dependence. A theory for parametric three-wave amplification of Josephson plasmons, which are assumed to be well-formed below T$_c$ but overdamped throughout the pseudogap phase, explains all these observations and provides a mechanism for non-equilibrium superconductivity. More broadly, our work underscores the role of parametric mode mixing to stabilize fluctuating orders in quantum materials.
Intense laser pulses have recently emerged as a tool to tune between different orders in complex quantum materials. Among different light-induced phenomena, transient superconductivity far above the equilibrium transition temperature in cuprates is particularly attractive. Key to those experiments was the resonant pumping of specific phonon modes, which was believed to induce superconducting phase coherence by suppressing the competing orders or modifying the structure slightly. Here, we present a comprehensive study of photo-induced nonequilibrium response in underdoped YBa$_2$Cu$_3$O$_{6+x}$. We find that upon photo-excitations, Josephson plasma edge in superconducting state is initially removed accompanied by quasiparticle excitations, and subsequently reappears at frequency lower than the static plasma edge within short time. In normal state, an enhancement or weaker edge-like shape is indeed induced by pump pulses in the reflectance spectrum accompanied by simultaneous rises in both real and imaginary parts of conductivity. We compare the pump-induced effects between near- and mid-infrared excitations and exclude phonon pumping as a scenario for the photo-induced effects above. We further elaborate the transient responses in normal state are unlikely to be explained by photo-induced superconductivity.
220 - L. Tassini , W. Prestel , A. Erb 2008
We present results of Raman scattering experiments on tetragonal ${rm (Y_{1-y}Ca_{y})Ba_{2}Cu_{3}O_{6+x}}$ for doping levels $p(x,y)$ between 0 and 0.07 holes/CuO$_2$. Below the onset of superconductivity at $p_{rm sc1} approx 0.06$, we find evidence of a diagonal superstructure. At $p_{rm sc1}$, lattice and electron dynamics change discontinuously with the charge and spin properties being renormalized at all energy scales. The results indicate that charge ordering is intimately related to the transition at $p_{rm sc1}$ and that the maximal transition temperature to superconductivity at optimal doping $T_{c}^{rm max}$ depends on the type of ordering at $p>p_{rm sc1}$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا