Do you want to publish a course? Click here

A large population of recently-quenched red-sequence dwarf galaxies in the outskirts of the Coma Cluster

99   0   0.0 ( 0 )
 Added by Russell J. Smith
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We analyse the stellar populations of 75 red-sequence dwarf galaxies in the Coma cluster, based on high signal-to-noise spectroscopy from the 6.5m MMT. The sample covers a luminosity range 3-4 magnitudes below M*, in the cluster core and in a field centred 1 deg to the south-west. We find a strong dependence of the absorption line strengths with location in the cluster. Galaxies further from the cluster centre have stronger Balmer lines than inner-field galaxies of the same luminosity. The magnesium lines are weaker at large radius, while the iron lines are not correlated with radius. Converting the line strengths into estimates of stellar age, metallicity and abundance ratios, we find the gradients are driven by variations in age (>6 sigma significance) and in the iron abundance Fe/H (~2.7 sigma significance). The light element (Mg, C, N, Ca) abundances are almost independent of radius. At radius of 0.4-1.3 degree (~0.3-1.0x the virial radius), dwarf galaxies have ages ~3.8 Gyr on average, compared to ~6 Gyr near the cluster centre. The outer dwarfs are also ~50% more iron-enriched, at given luminosity. Our results confirm earlier indications that the ages of red-sequence galaxies depend on location within clusters, and in Coma in particular. The exceptionally strong trends found here suggest that dwarf galaxies are especially susceptible to environmental quenching, and/or that the south-west part of Coma is a particularly clear example of recent quenching in an infalling subcluster.



rate research

Read More

We use the Sloan Digital Sky Survey to investigate the properties of massive elliptical galaxies in the local Universe (zleq0.08) that have unusually blue optical colors. Through careful inspection, we distinguish elliptical from non-elliptical morphologies among a large sample of similarly blue galaxies with high central light concentrations (c_rgeq2.6). These blue ellipticals comprise 3.7 per cent of all c_rgeq2.6 galaxies with stellar masses between 10^10 and 10^11 h^{-2} {rm M}_{sun}. Using published fiber spectra diagnostics, we identify a unique subset of 172 non-star-forming ellipticals with distinctly blue urz colors and young (< 3 Gyr) light-weighted stellar ages. These recently quenched ellipticals (RQEs) have a number density of 2.7-4.7times 10^{-5},h^3,{rm Mpc}^{-3} and sufficient numbers above 2.5times10^{10} h^{-2} {rm M}_{sun} to account for more than half of the expected quiescent growth at late cosmic time assuming this phase lasts 0.5 Gyr. RQEs have properties that are consistent with a recent merger origin (i.e., they are strong `first-generation elliptical candidates), yet few involved a starburst strong enough to produce an E+A signature. The preferred environment of RQEs (90 per cent reside at the centers of < 3times 10^{12},h^{-1}{rm M}_{sun} groups) agrees well with the `small group scale predicted for maximally efficient spiral merging onto their halo center and rules out satellite-specific quenching processes. The high incidence of Seyfert and LINER activity in RQEs and their plausible descendents may heat the atmospheres of small host halos sufficiently to maintain quenching.
443 - I. Misgeld , S. Mieske , M. Hilker 2011
We performed a large spectroscopic survey of compact, unresolved objects in the core of the Hydra I galaxy cluster (Abell 1060), with the aim of identifying ultra-compact dwarf galaxies (UCDs), and investigating the properties of the globular cluster (GC) system around the central cD galaxy NGC 3311. We obtained VIMOS medium resolution spectra of about 1200 candidate objects with apparent magnitudes 18.5 < V < 24.0 mag, covering both the bright end of the GC luminosity function and the luminosity range of all known UCDs. By means of spectroscopic redshift measurements, we identified 118 cluster members, from which 52 are brighter than M_V = -11.0 mag, and can therefore be termed UCDs. The brightest UCD in our sample has an absolute magnitude of M_V = -13.4 mag (corresponding to a mass of > 5 x 10^7 M_sun) and a half-light radius of 25 pc. This places it among the brightest and most massive UCDs ever discovered. Most of the GCs/UCDs are both spatially and dynamically associated to the central cD galaxy. The overall velocity dispersion of the GCs/UCDs is comparable to what is found for the cluster galaxies. However, when splitting the sample into a bright and a faint part, we observe a lower velocity dispersion for the bright UCDs/GCs than for the fainter objects. At a dividing magnitude of M_V = -10.75 mag, the dispersions differ by more than 200 km/s, and up to 300 km/s for objects within 5 arcmin around NGC 3311. We interpret these results in the context of different UCD formation channels, and conclude that interaction driven formation seems to play an important role in the centre of Hydra I.
480 - E. Kourkchi 2011
We present the study of a large sample of early-type dwarf galaxies in the Coma cluster observed with DEIMOS on the Keck II to determine their internal velocity dispersion. We focus on a subsample of 41 member dwarf elliptical galaxies for which the velocity dispersion can be reliably measured, 26 of which were studied for the first time. The magnitude range of our sample is $-21<M_R<-15$ mag. This paper (paper I) focuses on the measurement of the velocity dispersion and their error estimates. The measurements were performed using {it pPXF (penalised PiXel Fitting)} and using the Calcium triplet absorption lines. We use Monte Carlo bootstrapping to study various sources of uncertainty in our measurements, namely statistical uncertainty, template mismatch and other systematics. We find that the main source of uncertainty is the template mismatch effect which is reduced by using templates with a range of spectral types. Combining our measurements with those from the literature, we study the Faber-Jackson relation ($Lproptosigma^alpha$) and find that the slope of the relation is $alpha=1.99pm0.14$ for galaxies brighter than $M_Rsimeq-16$ mag. A comprehensive analysis of the results combined with the photometric properties of these galaxies is reported in paper II.
52 - Jeff Secker 1997
We study the dwarf galaxy population in the central ~700 arcmin^2 of the Coma cluster, the majority of which are early-type dwarf elliptical (dE) galaxies. Analysis of the statistically-decontaminated dE galaxy sequence in the color-magnitude diagram reveals a highly significant trend of color with magnitude (Delta (B-R)/Delta R = -0.056pm0.002 mag), in the sense that fainter dEs are bluer and thus presumably more metal-poor. The mean color of the faintest dEs in our sample is (B-R)~1.15 mag, consistent with a color measurement of the diffuse intracluster light in the Coma core. This intracluster light could then have originated from the tidal disruption of faint dEs in the cluster core. The total galaxy luminosity function (LF) is well modeled as the sum of a log-normal distribution for the giant galaxies, and a Schechter function for the dE galaxies with a faint-end slope alpha = -1.41pm0.05. This value of alpha is consistent with those measured for the Virgo and Fornax clusters. The spatial distribution of the faint dE galaxies (19.0 < R le 22.5 mag) has R_c = 22.15 arcmin (~0.46h^{-1} Mpc), significantly larger than the R_c = 13.71 arcmin (~0.29h^{-1} Mpc) found for the cluster giants and the brighter dEs (R le 19.0 mag), consistent with tidal disruption of the faint dEs. Finally, we find that most dEs belong to the general Coma cluster potential rather than as satellites of individual giant galaxies: An analysis of the number counts around 10 cluster giants reveals that they each have on average 4pm 1 dE companions within a projected radius of 13.9h^{-1} kpc. (Abridged)
We present stellar population parameters of twelve early-type galaxies (ETGs) in the Coma Cluster based on spectra obtained using the Low Resolution Imaging Spectrograph on the Keck II Telescope. Our data allow us to examine in detail the zero-point and scatter in their stellar population properties. Our ETGs have SSP-equivalent ages of on average 5-8 Gyr with the models used here, with the oldest galaxies having ages of ~10 Gyr old. This average age is identical to the mean age of field ETGs. Our ETGs span a large range in velocity dispersion but are consistent with being drawn from a population with a single age. Specifically, ten of the twelve ETGs are consistent within their formal errors of having the same age, 5.2+/-0.2 Gyr, over a factor of more than 750 in mass. We therefore find no evidence for downsizing of the stellar populations of ETGs in the core of the Coma Cluster. We suggest that Coma Cluster ETGs may have formed the majority of their mass at high redshifts but suffered small but detectable star formation events at z~0.1-0.3. Previous detections of downsizing from stellar populations of local ETGs may not reflect the same downsizing seen in lookback studies of RSGs, as the young ages of the local ETGs represent only a small fraction of their total masses. (abridged)
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا