Systems in the dispersive regime of cavity quantum electrodynamics (QED) are approaching the limits of validity of the dispersive approximation. We present a model which takes into account nonlinear corrections to the dressing of the atom by the field. We find that in the presence of pure dephasing, photons populating the cavity act as a heat bath on the atom, inducing incoherent relaxation and excitation. These effects are shown to reduce the achievable signal-to-noise ratio in cavity QED realizations where the atom is measured indirectly through cavity transmission and in particular in circuit QED.
We study the decoherence of a superconducting qubit due to the dispersive coupling to a damped harmonic oscillator. We go beyond the weak qubit-oscillator coupling, which we associate with a phase Purcell effect, and enter into a strong coupling regime, with qualitatively different behavior of the dephasing rate. We identify and give a physicaly intuitive discussion of both decoherence mechanisms. Our results can be applied, with small adaptations, to a large variety of other physical systems, e. g. trapped ions and cavity QED, boosting theoretical and experimental decoherence studies.
We present an ideal realization of the Tavis-Cummings model in the absence of atom number and coupling fluctuations by embedding a discrete number of fully controllable superconducting qubits at fixed positions into a transmission line resonator. Measuring the vacuum Rabi mode splitting with one, two and three qubits strongly coupled to the cavity field, we explore both bright and dark dressed collective multi-qubit states and observe the discrete square root of N scaling of the collective dipole coupling strength. Our experiments demonstrate a novel approach to explore collective states, such as the W-state, in a fully globally and locally controllable quantum system. Our scalable approach is interesting for solid-state quantum information processing and for fundamental multi-atom quantum optics experiments with fixed atom numbers.
We theoretically study measurement induced-dephasing of a superconducting qubit in the circuit QED architecture and compare the results to those obtained experimentally by Schuster {it et al.}, [Phys. Rev. Lett. 94, 123602 (2005)]. Strong coupling of the qubit to the resonator leads to a significant ac-Stark shift of the qubit transition frequency. As a result, quantum fluctuations in the photon number populating the resonator cause dephasing of the qubit. We find good agreement between the predicted line shape of the qubit spectrum and the experimental results. Furthermore, in the strong dispersive limit, where the Stark shift per photon is large compared to the cavity decay rate and the qubit linewidth, we predict that the qubit spectrum will be split into multiple peaks, with each peak corresponding to a different number of photons in the cavity.
We study the photon shot noise dephasing of a superconducting transmon qubit in the strong-dispersive limit, due to the coupling of the qubit to its readout cavity. As each random arrival or departure of a photon is expected to completely dephase the qubit, we can control the rate at which the qubit experiences dephasing events by varying textit{in situ} the cavity mode population and decay rate. This allows us to verify a pure dephasing mechanism that matches theoretical predictions, and in fact explains the increased dephasing seen in recent transmon experiments as a function of cryostat temperature. We investigate photon dynamics in this limit and observe large increases in coherence times as the cavity is decoupled from the environment. Our experiments suggest that the intrinsic coherence of small Josephson junctions, when corrected with a single Hahn echo, is greater than several hundred microseconds.
Recent experiments on Josephson junction arrays (JJAs) in microwave cavities have opened up a new avenue for investigating the properties of these devices while minimising the amount of external noise coming from the measurement apparatus itself. These experiments have already shown promise for probing many-body quantum effects in JJAs. In this work, we develop a general theoretical description of such experiments by deriving a quantum phase model for planar JJAs containing quantized vortices. The dynamical susceptibility of this model is calculated for some simple circuits, and signatures of the injection of additional vortices are identified. The effects of decoherence are considered via a Lindblad master equation.
Maxime Boissonneault
,J. M. Gambetta
,Alexandre Blais
.
(2008)
.
"Non-linear dispersive regime of cavity QED: The dressed dephasing model"
.
Maxime Boissonneault
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا